Answer: Yes we agree with the student's claim.
Explanation:
When the molecules are present in smaller size, more reactants can react as decreasing the size increases the surface area of the reactants which will enhance the contact of molecules.Hence, more products will form leading to increased rate of reaction.
On increasing the temperature will make more reactant molecules will have sufficient energies to cross the energy barrier and thus the number of effective collisions increases, thus leading to more products and increased rate of reaction.
When the solution is stirred , the molecule's kinetic energy and thus the rate of reaction increases.
Thus smaller size, stirring and increase of temperature will make the solution quickly.
Answer: False, I believe.
Explanation: If a Hypothesis is proven correct, then another experiment to strengthen that Hypothesis is should be done.
Answer:
The entropy change for a real, irreversible process is equal to <u>zero.</u>
The correct option is<u> 'c'.</u>
Explanation:
<u>Lets look around all the given options -:</u>
(a) the entropy change for a theoretical reversible process with the same initial and final states , since the entropy change is equal and opposite in reversible process , thus this option in not correct.
(b) equal to the entropy change for the same process performed reversibly ONLY if the process can be reversed at all. Since , the change is same as well as opposite too . Therefore , this statement is also not true .
(c) zero. This option is true because We generate more entropy in an irreversible process. Because no heat moves into or out of the surroundings during the procedure, the entropy change of the surroundings is zero.
(d) impossible to tell. This option is invalid , thus incorrect .
<u>Hence , the correct option is 'c' that is zero.</u>