It'll certainly seem like it, because the water will get cold. But cold is not a thing. Heat is. What actually happens is that heat from the water flow into the ice (and melts it).
The answer for the following problem is mentioned below.
The option for the question is "A" approximately.
- <u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>
Explanation:
Given:
Spring constant (k) = 240 N/m
amount of the compression (x) = 0.40 m
To calculate:
Elastic potential energy (E)
We know;
<em>According to the formula;</em>
E =
× k × x × x
<u>E = </u>
<u> × k ×(x)²</u>
where;
E represents the elastic potential energy
K represents the spring constant
x represents amount of the compression in the string
So therefore,
Substituting the values in the above formula;
E =
× 240 × (0.40)²
E =
× 240 × 0.16
E =
× 38.4
E = 19.2 J or approximately 20 J
<u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>