Answer:
The net energy is 2.196 eV
Explanation:
Basically, the energy of an atom increases when it absorbs a photon. In addition, the wavelength of the emitted photon is longer such that the atom absorbed a net energy in the process.
Using:
ΔE = h*c*(1/λ
- 1/λ
)
where:
ΔE is the net energy in eV (electron-volt). 1 eV is equivalent to 1.602*
J.
h = 4.135*
eVs
c = 3*
m/s
λ
= 300 nm = 300*
m
λ
= 640 nm = 640*
m
Thus:
ΔE = 4.135*
eVs*3*
m/s*(
)
ΔE = 4.135*
*3*
*1.77*
eV = 2.196 eV
Answer:
4.285 L of water must be added.
Explanation:
Hello there!
In this case, for this dilution-like problems, we need to figure out the final volume of the resulting solution so that we would be able to obtain the correct volume of diluent (water) to be added. In such a way, we can obtain the final volume, V2, as shown below:

Thus, by plugging in the initial molarity, initial volume and final molarity (0.587 M) we obtain:

It means we need to add:

Of diluent water.
Regards!
The radioactive isotope's atomic number decreases by two, and the alpha particle has an atomic number of 2. It wasnt clear which one you were asking for, so there is both.
The answer is B. because it starts at Conifer Seeds and ends at Northern goshawks.
Answer:
126.73 mL
Explanation:
The total pressure of the gas mixture is the sum of the vapor pressure of its constituents. So, the vapor pressure of N₂O(p) can be calculated:
750 = 18.85 + p
p = 750 - 18.85
p = 731.15 torr
It means that for 731.15 torr, N₂O occupied 130 mL. For the general gas equation, we know that

Where <em>p</em> is the pressure, <em>V</em> is the volume, <em>T</em> is the temperature, 1 is the initial state, and 2 the final state. For the same temperatue (21ºC), the equation results on Boyle's law:
p1V1 = p2V2, so:
731.15x130 = 750xV2
750V2 = 95049.5
V2 = 126.73 mL