Given :
Mass of water, m = 2 grams.
The temperature of water drops from 31 °C to 29 °C .
The specific heat of water is 4.184 J/(g • °C).
To Find :
Amount of heat lost in this process.
Solution :
We know, heat lost is given by :

Therefore, amount of heat lost in this process is 16.736 J.
Answer:
Its diameter increases as it flows down from the pipe. Assuming laminar flow for the water, then Bernoulli's equation can be applied.
P1-P2 + (rho)g(h1 - h2) + 1/2(rho)(v1² - v2²) = 0
Explanation:
P1 = P2 = atmospheric pressure so, P1 - P2 = 0
h1 is greater than h2 so h1-h2 is positive. Rearranging the equation above 2{ (rho)g(h1-h2) + 1/2(rho)v1²}/rho = v2²
From the continuity equation for fluids
A1v1 = A2v2
v2 = A1v1/A2
Substituting into the equation above
(A1v1/A2)² = 2{ (rho)g(h1-h2) + 1/2(rho)v1²}/rho
Making A2² the subject of the formula,
A2² = (A1v1)²× rho/(2{ (rho)g(h1-h2) + 1/2(rho)v1²}
The denominator will be greater than the numerator and as a result the diameter of the flowing stream decreases.
Thank you for reading.
180 pounds (lb) converts to 81.647 kilograms (kg).
I would say the answer to your question is A Ferris wheel turning at a constant speed. The reasoning behind this answer is the fact that traveling in a constant direction at a constant speed is not accelerating. The Ferris wheel is the only option that fits this description. The last option would be incorrect due to independent causes such as speed limit changes as well as turns and stops on the highway.
Hi you didn't provide any images to solve the question, hence I am going to solve a different question of same concept so you can have an idea how to tackle such types of questions.(please refer to the attachment for question)
Answer:
<u> Please refer to the attachment for answers and explanation</u>
Explanation:
<u> Please refer to the attachment for answers and explanation</u>