<span>There is six horizen.
1. O Horizon - The top, organic layer of soil,
2. A Horizon - The layer called topsoil;
3. E Horizon - This layer is beneath the A Horizon and above the
B Horizon. It is made up mostly of sand.
4. B Horizon - Also called the subsoil - this layer is beneath the E
Horizon and above the C Horizon.
5. C Horizon - it's called regolith: the layer beneath the B Horizon
and above the R Horizon.
6 R Horizon - this is last and the unweathered rock layer that is
beneath all the other layers.</span>
If you take a fluid (i.e. air or water) and heat it, the portion that is heated usually expands. The same mass takes up more volume and as a consequence the heated portion becomes less dense than the portion that is<span><span> not heated.</span> </span>
Answer:
156.8 Watts
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 10 kg
Height (h) = 8 m
Time (t) = 5 s
Power (P) =?
Next, we shall determine the energy used by the motor to raise the block. This can be obtained as follow:
Mass (m) = 10 kg
Height (h) = 8 m
Acceleration due to gravity (g) = 9.8 m/s²
Energy (E) =?
E = mgh
E = 10 × 9. 8 × 8
E = 784 J
Finally, we shall determine the power output of the motor. This can be obtained as illustrated below:
Time (t) = 5 s
Energy (E) = 784 J
Power (P) =?
P = E/t
P = 784 / 5
P = 156.8 Watts
Therefore, the power output of the motor is 156.8 Watts
No. Mechanical energy is not conserved. There's quite a bit of friction on the slide. So some of the potential energy is lost to heat on the way down, and the child arrives at the bottom with hot pants and less kinetic energy than you might expect.
Answer:
ramp b requires less force than ramp a
Explanation: