Answer:
Independent: sizes of nails
Dependent: number of paper clips
Controlled: Battery, wire and type of nails
Explanation:
An independent variable is a variable which when changes does not the effect the results of the experiment. It does not depends upon the dependent variable.
A dependent variable is defined as a variable which is affected when the independent variable is changed by the researcher or the experimenter. It depends greatly upon the independent variable.
While a controlled variable is that variable whose value is not changed in an experiment. It contains all the constants.
In the context,
the independent variable are : sizes of nails
the dependent variables are : number of paper clips
the Controlled variables are: Battery, wire and type of nails
Answer : The energy removed must be, 29.4 kJ
Explanation :
The process involved in this problem are :

The expression used will be:
![Q=[m\times c_{p,l}\times (T_{final}-T_{initial})]+[m\times \Delta H_{fusion}]+[m\times c_{p,s}\times (T_{final}-T_{initial})]](https://tex.z-dn.net/?f=Q%3D%5Bm%5Ctimes%20c_%7Bp%2Cl%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D%2B%5Bm%5Ctimes%20%5CDelta%20H_%7Bfusion%7D%5D%2B%5Bm%5Ctimes%20c_%7Bp%2Cs%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D)
where,
= heat released for the reaction = ?
m = mass of benzene = 94.4 g
= specific heat of solid benzene = 
= specific heat of liquid benzene = 
= enthalpy change for fusion = 
Now put all the given values in the above expression, we get:
![Q=[94.4g\times 1.73J/g.K\times (279-322)K]+[94.4g\times -125.6J/g]+[94.4g\times 1.51J/g.K\times (205-279)K]](https://tex.z-dn.net/?f=Q%3D%5B94.4g%5Ctimes%201.73J%2Fg.K%5Ctimes%20%28279-322%29K%5D%2B%5B94.4g%5Ctimes%20-125.6J%2Fg%5D%2B%5B94.4g%5Ctimes%201.51J%2Fg.K%5Ctimes%20%28205-279%29K%5D)

Negative sign indicates that the heat is removed from the system.
Therefore, the energy removed must be, 29.4 kJ
Answer:
Coefficient of
is more than 4
Explanation:
Oxidation: 
- Balance charge:
......(1)
Reduction: 
- Balance Cr:

- Balance O and H in acidic medium:

- Balance charge:
.......(2)
gives balanced equation:

So coefficient of
is more than 4
Answer:
Always carry the microscope with two hands. One on the arm and one underneath the base of the microscope.
Answer:
The concentration of the copper sulfate solution is 83 mM.
Explanation:
The absorbance of a copper sulfate solution can be calculated using Beer-Lambert Law:
A = ε . c . <em>l</em>
where
ε is the extinction coefficient of copper sulfate (ε = 12 M⁻¹.cm⁻¹)
c is its molar concentration (what we are looking for)
l is the pathlength (0.50 cm)
We can use this expression to find the molarity of this solution:
