Potassium metal + Chlorine Gas -------->
Potassium Chloride<span>
The chemical equation using symbols and formula is
<span>K (s) + </span></span><span><span><span><span>Cl</span>2</span> </span><span>(g) ---------> 2KCl (s)</span></span>
Answer:
High activation energy is the reason behind unsuccessful reaction.
Explanation:
There are two types of reaction: (1) thermodynamically controlled reaction and (2) kinetically controlled reaction.
Thermodynamically controlled reaction are associated with change in enthalpy during reaction. More negative the enthalpy change, more favored will be the reaction.
Kinetically controlled reaction are associated with activation energy of a reaction. The lower the activation energy value, the more rapid will be the reaction.
Here, reaction between
and
is thermodynamically favored due to negative enthalpy change but the high activation energy does not allow the reaction to take place by simple mixing.
Answer:
When [F⁻] exceeds 0.0109M concentration, BaF₂ will precipitate
Explanation:
Ksp of BaF₂ is:
BaF₂(s) ⇄ Ba²⁺(aq) + 2F⁻(aq)
Ksp = 1.7x10⁻⁶ = [Ba²⁺] [F⁻]²
The solution will produce BaF₂(s) -precipitate- just when [Ba²⁺] [F⁻]² > 1.7x10⁻⁶.
As the concentration of [Ba²⁺] is 0.0144M, the product [Ba²⁺] [F⁻]² will be equal to ksp just when:
1.7x10⁻⁶ = [Ba²⁺] [F⁻]²
1.7x10⁻⁶ = [0.0144M] [F⁻]²
1.18x10⁻⁴ = [F⁻]²
0.0109M = [F⁻]
That means, when [F⁻] exceeds 0.0109M concentration, BaF₂ will precipitate
Answer:
Power plants are not located in cities. Power has to travel a long distance over power lines to reach cities.
Explanation:
We all die. That's the end of that folks