Answer:
1.308 * 10^(-5) m
Explanation:
We apply the condition for a single slit experiment:
y = (λ * D) / a
Where y = half width of fringe
λ = wavelength of light
D = distance of slit from screen
a = width of slit
We need to find a, so we make a the subject of formula:
a = (λ * D) / y
From the question:
λ = 550 nm = 550 * 10^(-9) m
D = 0.63 m
y = 0.053 / 2 = 0.0265 m
Therefore:
a = (550 * 10^(-9) * 0.63) / 0.0265
a = 1.308 * 10^(-5) m
The width of the slit is 1.308 * 10^(-5) m
It reflects blue light waves.
The temperature inside the copper rod varies linearly with the distance from the hot end of the rod. This means that we can find the temperature at 23 cm (let's call it 'point A') from the cool end by solving a linear proportion.
The temperature difference between the two ends of the rod is

and this corresponds to a length of 81 cm. Therefore, we can write:

from which we find

This is not the final answer actually; this is the temperature difference between the cool end and point A. So, the temperature at point A is
The basketball is gaining kinetic and losing potential energy is the answer
Answer:
The average current that this cell phone draws when turned on is 0.451 A.
Explanation:
Given;
voltage of the phone, V = 3.7 V
electrical energy of the phone battery, E = 3.15 x 10⁴ J
duration of battery energy, t = 5.25 h
The power the cell phone draws when turned on, is the rate of energy consumption, and this is calculated as follows;

where;
P is power in watts
E is energy in Joules
t is time in seconds

The average current that this cell phone draws when turned on:
P = IV

Therefore, the average current that this cell phone draws when turned on is 0.451 A.