1) A The 78g
2) C Push on the wagon in the opposite direction as Jack with a force that is the same as Jack is applying.
The first three harmonics of the string are 131.8 Hz, 263.6 Hz and 395.4 Hz.
<h3>
Velocity of the wave</h3>
The velocity of the wave is calculated as follows;
v = √T/μ
where;
- T is tension
- μ is mass per unit length = 2 g/m = 0.002 kg/m
v = √(50/0.002)
v = 158.1 m/s
<h3>First harmonic or fundamental frequency of the wave</h3>
f₀ = v/λ
where;
f₀ = v/2L
f₀ = 158.1/(2 x 0.6)
f₀ = 131.8 Hz
<h3>Second harmonic of the wave</h3>
f₁ = 2f₀
f₁ = 2(131.8 Hz)
f₁ = 263.6 Hz
<h3>Third harmonic of the wave</h3>
f₂ = 3f₀
f₂ = 3(131.8 Hz)
f₂ = 395.4 Hz
Thus, the first three harmonics of the string are 131.8 Hz, 263.6 Hz and 395.4 Hz.
Learn more about harmonics here: brainly.com/question/4290297
#SPJ1
Answer: 117.60N
Explanation:
Weight is a force. Therefore, we can use the force formula to find weight.

W = weight
m = mass
g = acceleration due to gravity (
)

I just solved similar type of question. You can refer to my solution which I have attached
Answer:
16.935 N
Explanation:
In order to make the box start moving, the level force applied on the box (F) must be greater than the force of static friction that keeps the box at rest, which is equal to

where
is the coefficient of static friction
(mg) = 30 N is the weight of the box
Therefore, the condition for F must be:

So, the applied force must be greater than this value.