Answer
Pressure, P = 1 atm
air density, ρ = 1.3 kg/m³
a) height of the atmosphere when the density is constant
Pressure at sea level = 1 atm = 101300 Pa
we know
P = ρ g h
h = 7951.33 m
height of the atmosphere will be equal to 7951.33 m
b) when air density decreased linearly to zero.
at x = 0 air density = 0
at x= h ρ_l = ρ_sl
assuming density is zero at x - distance
now, Pressure at depth x
integrating both side
now,
h = 15902.67 m
height of the atmosphere is equal to 15902.67 m.
<span>According to newton's second law of motion,the acceleration of an object equals the net force acting on the object divided by the objects "Mass"
Hope this helps!</span>
Answer:
The value of A is 1.5m/s^2 and B is 0.5m/s^³
Explanation:
The mass of the rocket = 2540 kg.
Given velocity, v(t)=At + Bt^2
Given t =0
a= 1.50 m/s^2
Now, velocity V(t) = A*t + B*t²
If, V(0) = 0, V(1) = 2
a(t) = dV/dt = A+2B × t
a(0) = 1.5m/s^²
1.5m/s^² = A + 2B × 0
A = 1.5m/s^2
now,
V(1) = 2 = A× 1 + B× 1^²
1.5× 1 +B× 1 = 2m/s
B = 2-1.5
B = 0.5m/s^³
Now Check V(t) = A× t + B × t^²
So, V(1) = A× (1s) + B× (1s)^² = 1.5m/s^² × 1s + 0.5m/s^³ × (1s)^² = 1.5m/s + 0.5m/s = 2m/s
Therefore, B is having a unit of m/s^³ so B× (1s)^² has units of velocity (m/s)
Answer:
its acceleration decrease because of the force acted upon by the viscous liquid