Answer:
B
Explanation:
The particles are bound to each other and they vibrate at an almost undetectable rate.
I am going to say it is false.
Answer:
The Equilibrium constant K is far greater than 1; K>>1
Explanation:
The equilibrium constant, K, for any given reaction at equilibrium, is defined as the ratio of the concentration of the products raised to their stoichiometric coefficients divided by the concentration of reactants raised to their stoichiometric coefficients.
It tells us more about how how bigger or smaller the concentration of products is to that of the reactants when a reaction attains equilibrium. From the given data, as the color of the reactant mixture (Br2 is reddish-brown, and H2 is colourless) fades, more of the colorless product (HBr is colorless) is being formed as the reaction approaches equilibrium. This indicates yhat the concentration of products becomes relatively higher than that of the reactants as the reaction progresses towards equilibrium, the equilibrium constant K, must be greater than 1 therefore.
Answer:
1. The electronic configuration of X is: 1s2 2s2 sp6 3s2
2. The configuration of the anion of Y (i.e Y^2-) is 1s2 2s2 2p6
3. The formula of the compound form by X and Y is given as: XY
Explanation:
For X to loss two electrons, it means X is a group 2 element. X can be any element in group 2. The electronic configuration of X is:
1s2 2s2 sp6 3s2
To get the electronic configuration of the anion of element Y, let us find the configuration of element Y. This is done as follows:
Y receives two electrons from X to complete its octet. Therefore Y is a group 6 element. The electronic configuration of Y is given below
1s2 2s2 2p4
The configuration of the anion of Y (i.e Y^2-) is 1s2 2s2 2p6
The formula of the compound form by X and Y is given below :
X^2+ + Y^2- —> XY
Their valency will cancel out thus forming XY