Answer:
0.00225 N/m
Explanation:
Parameters given:
Current in first wire, I(1) = 15A
Current in second wire, I(2) = 15A
Distance between two wires, R = 1cm = 0.01m
The force per unit length between two current carrying wires is:
F/L = μ₀I(1)I(2)/2πR
μ₀ = 4π * 10^(-7) Tm/A
F/L = [4π * 10^(-7) * 15 * 15] / (2π * 0.01)
F/L = 2.25 * 10^(-3) N/m or 0.00225 * 10^(-3) N/m
Radiated away as electromagnetic radiation.
Hi there!
Recall:
Impulse = Change in momentum
I = Δp = mΔv = m(vf - vi)
Let the direction TOWARDS the floor be POSITIVE, and AWAY be NEGATIVE.
Plug in the givan values:
Δp = 1.5(-10 - 12) = -33 Ns
**OR, the magnitude: |-33| = 33 Ns
<span>To relate or measure the by the quantity of something, not against the quantity</span>