Answer:
market is a place where we sell or buy things ( goods)
it's characteristics are
buying and selling goods
perfect competitions
market doesn't refer only a fix place
For purposes of completing our calculations, we're going to assume that
the experiment takes place on or near the surface of the Earth.
The acceleration of gravity on Earth is about 9.8 m/s², directed toward the
center of the planet. That means that the downward speed of a falling object
increases by 9.8 m/s for every second that it falls.
3 seconds after being dropped, a stone is falling at (3 x 9.8) = 29.4 m/s.
That's the vertical component of its velocity. The horizontal component is
the same as it was at the instant of the drop, provided there is no horizontal
force on the stone during its fall.
The correct answer to the question is : 9375 N.
CALCULATION:
As per the question, the mass of the car m = 1500 Kg.
The diametre of the circular track D = 200 m.
Hence, the radius of the circular path R = 
= 
= 100 m.
The velocity of the truck v = 25 m/s.
When a body moves in a circular path, the body needs a centripetal force which helps the body stick to the orbit. It acts along the radius and towards the centre.
Hence, the force acting on the car is centripetal force.
The magnitude of the centripetal force is calculated as -
Force F = 
= 
= 9375 N. [ANS}
The centripetal force is provided to the car in two ways. It is the friction which provides the necessary centripetal force. Sometimes friction is not sufficient. At that time, the road is banked to some extent which provides the necessary centripetal force.
<span>This pivot is called refraction. It happens because different materials have different densities. The more dense the material the more atoms the light collides with and the slower it travels; the less dense, the fewer the collisions and hence a faster velocity. This pivoting, or refraction, is caused by the light either slowing down or speeding up.</span>
Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed.
P=F/A