Answer:
the vertical acceleration of the case is 1.46 m/s
Explanation:
Given;
mass of the clarinet case, m = 3.07 kg
upward force applied by the man, F = 25.60 N
Apply Newton's second law of motion;
the upward force on the clarinet case = its weight acting downwards + downward force due to its downward accelaration
F = mg + m(-a)
the acceleration is negative due to downward motion from the top of the piano.
F = mg - ma
ma = mg - F

Therefore, the vertical acceleration of the case is 1.46 m/s²
Answer:
Part A
Coriolis effect is used to describe how objects which are not fixed to the ground are deflected as they travel over long distances due to the rotation of the Earth relative to the 'linear' motion of the objects
Due to the Coriolis effect the wind flowing towards the Equator from high pressure belts in the subtropical regions in both the Northern and Southern Hemispheres are deflected towards the western direction because the Earth rotates on its axis towards the east
Part B
In the Northern Hemispheres, the winds are known as northeasterly trade winds and in the Southern Hemisphere, they are known as the southeasterly trade wind. Therefore, Coriolis effect has the same effect on the direction of the Trade Winds in the Southern Hemisphere as it does in the Northern Hemisphere
Explanation:
Yes it does, uh huh. It slows down as it rolls. That's a fact.
In order for the ball to roll forward, it has to push grass out of the way. That takes energy. To bend each blade of grass out of its way, the ball has to use a tiny bit of the kinetic energy that it has, so it gradually runs out of kinetic energy. When its kinetic energy is all gone, it stops moving.
Answer:The change in pressure can affect the pressure on the fluid through the radius and diameter of the pipe.
r^² x Pressure (pa).
Therefore the narrower the other part of the pile, the greater the pressure on the fluid at such part, the wider in other part the lesser the pressure on the fluid at this part.
Explanation: