That's called "refraction".
Answer:
3.82 ms
Explanation:
The period of a wave is equal to the reciprocal of the frequency:

where f is the frequency.
In this problem, f = 262 Hz, so the period if this sound wave is

Answer:
E_{k2}=2660 [J] kinetic energy.
Explanation:
The energy in the initial state i.e. when the rollercoaster is at the top is equal to the energy in the final state i.e. when it is at the bottom of the hill.
These states can be represented by means of the second equation.
![E_{k1}+E_{p1}=E_{k2}\\160 + 2500 = E_{k2}\\E_{k2}=2660 [J]](https://tex.z-dn.net/?f=E_%7Bk1%7D%2BE_%7Bp1%7D%3DE_%7Bk2%7D%5C%5C160%20%2B%202500%20%3D%20E_%7Bk2%7D%5C%5CE_%7Bk2%7D%3D2660%20%5BJ%5D)
Since the rollercoaster is located in the bottom of the hill where the potential energy level is zero, therefore there is only kinetic energy in the second state.
The shadow would subsequently drop the temperature in the city, forcing warmer air to rush in and violently destroy countless buildings. There would also be “black rain,” which would be the radioactive ash and dust that would liquify and pour down on the city and we would all die.