Answer:
v = 19.6 m/s.
Explanation:
Given that,
The radius of the circle, r = 5 m
The time period of the ball, T = 1.6s
We need to find the ball's tangential velocity.
The formula for the tangential velocity is given by :

Putting all the values in the above formula

So, the tangential velocity of the ball is 19.6 m/s. Hence, the correct option is (c).
Answer:
The acceleration would be 3.455.
Answer:
You are a guest magician in a circus. One of your tricks is to place a football on an inclined plane without the football rolling over is explained below in details.
Explanation:
spinning ball halts after traveling some range due to friction energy act different direction of movement of the ball. you can observe in the figure.
Let any rolling ball of mass (m ) is traveling with velocity v ,
common effect on ball (N) = mg
because of motion, friction energy develops on the contact exterior and begins to resist the movement of the rolling ball.
hence,
fr = uN = umg act on communicating exterior, so, after any time due to friction energy rolling ball gets to rest.
Answer:
200 mL
Explanation:
Given that,
Initial volume, V₁ = 300 mL
Initial pressure, P₁ = 0.5 kPa
Final pressure, P₂ = 0.75 kPa
We need to find the final volume of the sample if pressure is increased at constant temperature. It is based on Boyle's law. Its mathematical form is given by :

V₂ is the final volume

So, the final volume of the sample is 200 mL.