An ... (Base ) .... is a compound that turns red litmus paper blue and is often found in soaps and detergents.
A force of 43.8 N is required to stretch the spring a distance of 15.5 cm = 0.155 m, so the spring constant <em>k</em> is
43.8 N = <em>k</em> (0.155 m) ==> <em>k</em> = (43.8 N) / (0.155 m) ≈ 283 N/m
The total work done on the spring to stretch it to 15.5 cm from equilibrium is
1/2 (283 N/m) (0.155 m)² ≈ 3.39 J
The total work needed to stretch the spring to 15.5 cm + 10.4 cm = 25.9 cm = 0.259 m from equilibrium would be
1/2 (283 N/m) (0.259 m)² ≈ 9.48 J
Then the additional work needed to stretch the spring 10.4 cm further is the difference, about 6.08 J.
Answer:
I believe it is luminosity and distance
Explanation:
So B
Answer:
the speed of the block when it reaches point B is 14 m/s
Explanation:
Given that:
mass of the block slides = 1.5 - kg
height = 10 m
Force constant = 200 N/m
distance of rough surface patch = 20 m
coefficient of kinetic friction = 0.15
In order to determine the speed of the block when it reaches point B.
We consider the equation for the energy conservation in the system which can be represented by:






v = 14 m/s
Thus; the speed of the block when it reaches point B is 14 m/s
Frequency of the wave is 2 per second
Explanation:
- Frequency is the number of times waves pass at a particular point of time. Here, time period = 0.5 s
- Frequency is given by the formula
f = 1/T, where f is the frequency and T is the time period
⇒ f = 1/0.5 = 2 per second