Answer:
1) HNO3/H2SO4, 2) CH3CH2CH2Cl/AlCl3
Explanation:
Benzene is a stable aromatic compound hence it undergoes substitution rather than addition reaction.
When benzene undergoes substitution reaction, the substituent introduced into the ring determines the position of the incoming electrophile.
If I want to synthesize m-nitropropylbenzene, I will first carry out the nitration of benzene using HNO3/H2SO4 since the -nitro group is a meta director. This is now followed by Friedel Craft's alkykation using CH3CH2CH2Cl/AlCl3.
Answer:
The correct option is volume stays constant
Explanation:
When a gas container (in this case an aerosol can) is subjected to heat (from fire), the temperature of the can and subsequently <u><em>the temperature of the gas itself increases</em></u>, an increase in the temperature of the gas cause <u><em>the pressure to also increase;</em></u> as the gas molecules will collide more and faster with each other and against the wall of the can. However, the volume of the gas will remain the same as before it was subjected to the heat - the gas particles do not get destroyed or increased as a result of the heat (law of conservation of matter explains this).
Glucose and a plants and ur welcome