Answer:
163.33 Watts
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 40 Kg
Height (h) = 25 m
Time (t) = 1 min
Power (P) =..?
Next, we shall determine the energy. This can be obtained as follow:
Mass (m) = 40 Kg
Height (h) = 25 m
Acceleration due to gravity (g) = 9.8 m/s²
Energy (E) =?
E = mgh
E = 40 × 9.8 × 255
E = 9800 J
Finally, we shall determine the power. This can be obtained as illustrated below:
Time (t) = 1 min = 60 s
Energy (E) = 9800 J
Power (P) =?
P = E/t
P = 9800 / 60
P = 163.33 Watts
Thus, the power required is 163.33 Watts
(1500 rev/min)(min / 60 s) / (3.0 s) = 8.33 rev/s²
<span>(B) </span>
<span>(1/2)(8.33 rev/s²)(3.0 s)² = 37.5 rev </span>
<span>(C) </span>
<span>(1500 rev/min)(min / 60 s)[2π(0.12 m) / rev] = 18.8 m/s</span>
Linear momentum is in a straight line and depends on the objects mass and velocity.
Angular (rotational) momentum depends on the objects mass, velocity, and radius.
The new velocity after 4 s is 40 m/s
The height of the spaceship above the ground after 5 seconds is 1,127.5 m
The given parameters for the first question;
- initial velocity of the car, u = 76 m/s
- acceleration of the car, a = - 9 m/s²
The new velocity after 4 s is calculated as;
v = u + at
v = 76 + (-9)(4)
v = 76 - 36
v = 40 m/s
(5)
The given parameters;
- height above the ground, h = 500 m
- velocity of spaceship, u = 150 m/s
The height of the spaceship above the ground after 5 seconds is calculated as;

Learn more here: brainly.com/question/24527971