The viscous force on an object moving through air is proportional to its velocity.
The only forces acting on an object when falling are air resistance and its weight itself. The weight acts vertically downwards whereas air resistance acts vertically upward.
Let F be the viscous force due to air molecules, B be buoyant force due to air and W be the weight of falling object. Initially, the velocity of falling object and hence the viscous force F is zero and the object is accelerated due to force
(W-B). Because of the acceleration the velocity increases and accordingly the viscous force also increases. At a certain instant, the viscous force becomes equal to W-B. The net force then becomes zero and the object falls with constant velocity. This constant velocity is called terminal velocity.
Thus at terminal velocity, air resistance and force of gravity becomes equal.
Answer:
baking the cake batter
Explanation:
Baking the cake batter will indicate that chemical change has occurred here. What is a chemical change?
- A chemical change is one in which a new kind of matter is formed.
- It is usually accompanied by energy either evolution or absorption of energy in form of heat or light or both.
- The process is irreversible.
- When the batter bakes, a new substance different from the cake mix is obtainable.
- We cannot get back the ingredient from this baked cake. It is impossible.
- This is good indicator of chemical change.
The statement to every reacting there is, there is a opposite and same reacting.
hope it helps
Answer:
Part a)
When spring compressed by 2 cm
H = 1.47 m
Part b)
When spring is compressed by 4 cm
H = 5.94 m
Explanation:
Part a)
As we know that the spring is compressed and released
so here spring potential energy is converted into gravitational potential energy at its maximum height
So we will have


so we have

Part b)
Similarly when spring is compressed by 4 cm
then we have


so we have

Answer:
4.78 x 10^-11 J
Explanation:
A = 1.5 x 10^-4 m^2
d = 2 mm = 2 x 10^-3 m
V = 12 V
Let C be the capacitance of the capacitor
C = ε0 A / d
C = (8.854 x 10^-12 x 1.5 x 10^-4) / (2 x 10^-3)
C = 6.64 x 10^-13 F
Energy stored, U = 1/2 CV^2
U = 0.5 x 6.64 x 10^-13 x 12 x 12
U = 4.78 x 10^-11 J