D is the answer
in V-t graph, tan α= velocity/time=acceleration
Answer:
Second projectile is 1.4 times faster than first projectile.
Explanation:
By linear momentum conservation
Pi = Pf
m x U + M x 0 = (m + M) x V

Now Since this projectile + pendulum system rises to height 'h', So using energy conservation:
KEi + PEi = KEf + PEf
PEi = 0, at reference point
KEf = 0, Speed of system zero at height 'h'

PEf = (m + M) g h
So,


So from above value of V
Initial velocity of projectile =U

Now Since mass of projectile and pendulum are constant, So Initial velocity of projectile is proportional to the square root of height swung by pendulum.
Which means



U₂ = 1.41 U₁
Therefore we can say that ,Second projectile is 1.4 times faster than first projectile.
Can you further elaborate this isn't making much sense my mans
Answer:
a cold air mass and a warm air mass merge together
<span>Two plastic balls suspended by strings are placed close to each other. If they have the same charge then they will repel each other.</span>