Answer:
I'm pretty sure its 3m/s^2 for the acceleration but I don't know the force part sorry .
Explanation:
15m/s - 0m/s divided by 5 s = 3m/s
I'm no expert or anything so I could be wrong but this is the best I can give you. Sorry
Answer:
354 m/s
Explanation:
For the second overtune (Third harmonic) of an open pipe,
λ = 2L/3................................ Equation 1
Where L = Length of the open pipe, λ = Wave length.
Given: L = 1.75 m.
Substitute into equation 1
λ = 2(1.75)/3
λ = 1.17 m.
From the question,
V = λf.......................... Equation 2
V = speed of sound in the room, f = frequency
Given: f = 303 Hz.
Substitute into equation 2
V = 1.17(303)
V = 353.5
V ≈ 354 m/s
Hence the right answer is 354 m/s
Answer:
Distance = 345719139.4[m]; acceleration = 3.33*10^{19} [m/s^2]
Explanation:
We can solve this problem by using Newton's universal gravitation law.
In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m
![r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]](https://tex.z-dn.net/?f=r_%7Be%7D%20%3D%20distance%20earth%20to%20the%20astronaut%20%5Bm%5D.%5C%5Cr_%7Bm%7D%20%3D%20distance%20moon%20to%20the%20astronaut%20%5Bm%5D%5C%5Cr_%7Bt%7D%20%3D%20total%20distance%20%3D%203.84%2A10%5E8%5Bm%5D)
Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.
Mathematically this equals:

![F_{m} =G*\frac{m_{m}*m_{a} }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]](https://tex.z-dn.net/?f=F_%7Bm%7D%20%3DG%2A%5Cfrac%7Bm_%7Bm%7D%2Am_%7Ba%7D%20%20%7D%7Br_%7Bm%7D%20%5E%7B2%7D%20%7D%20%5C%5Cwhere%3A%5C%5CG%20%3D%20gravity%20constant%20%3D%206.67%2A10%5E%7B-11%7D%5B%5Cfrac%7BN%2Am%5E%7B2%7D%20%7D%7Bkg%5E%7B2%7D%20%7D%20%5D%20%5C%5Cm_%7Be%7D%3D%20earth%27s%20mass%20%3D%205.98%2A10%5E%7B24%7D%5Bkg%5D%5C%5C%20m_%7Ba%7D%3D%20astronaut%20mass%20%3D%20100%5Bkg%5D%5C%5Cm_%7Bm%7D%3D%20moon%27s%20mass%20%3D%207.36%2A10%5E%7B22%7D%5Bkg%5D)
When we match these equations the masses cancel out as the universal gravitational constant

To solve this equation we have to replace the first equation of related with the distances.

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.
![r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c } }{2*a}\\ where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) } }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]](https://tex.z-dn.net/?f=r_%7Bm1%2C2%7D%3D%5Cfrac%7B-b%2B-%20%5Csqrt%7Bb%5E%7B2%7D-4%2Aa%2Ac%20%7D%20%20%7D%7B2%2Aa%7D%5C%5C%20%20where%3A%5C%5Ca%3D80.25%5C%5Cb%3D768%2A10%5E%7B6%7D%20%5C%5Cc%20%3D%20-1.47%2A10%5E%7B17%7D%20%5C%5Creplacing%3A%5C%5Cr_%7Bm1%2C2%7D%3D%5Cfrac%7B-768%2A10%5E%7B6%7D%2B-%20%5Csqrt%7B%28768%2A10%5E%7B6%7D%29%5E%7B2%7D-4%2A80.25%2A%28-1.47%2A10%5E%7B17%7D%29%20%7D%20%20%7D%7B2%2A80.25%7D%5C%5C%5C%5Cr_%7Bm1%7D%3D%2038280860.6%5Bm%5D%20%5C%5Cr_%7Bm2%7D%3D-2.97%2A10%5E%7B17%7D%20%5Bm%5D)
We work with positive value
rm = 38280860.6[m] = 38280.86[km]
<u>Second part</u>
<u />
The distance between the Earth and this point is calculated as follows:
re = 3.84 108 - 38280860.6 = 345719139.4[m]
Now the acceleration can be found as follows:
![a = G*\frac{m_{e} }{r_{e} ^{2} } \\a = 6.67*10^{11} *\frac{5.98*10^{24} }{(345.72*10^{6})^{2} } \\a=3.33*10^{19} [m/s^2]](https://tex.z-dn.net/?f=a%20%3D%20G%2A%5Cfrac%7Bm_%7Be%7D%20%7D%7Br_%7Be%7D%20%5E%7B2%7D%20%7D%20%5C%5Ca%20%3D%206.67%2A10%5E%7B11%7D%20%2A%5Cfrac%7B5.98%2A10%5E%7B24%7D%20%7D%7B%28345.72%2A10%5E%7B6%7D%29%5E%7B2%7D%20%20%7D%20%5C%5Ca%3D3.33%2A10%5E%7B19%7D%20%5Bm%2Fs%5E2%5D)
Answer:
Ratio of magnetic field will be 
Explanation:
We have given radius of the loop r = 30 mm = 0.03 m
We know that magnetic field at the center of the loop is given by
---------eqn 1
Number of turns in the solenoid is given as n = 3 turn per mm = 3000 turn per meter
We know that magnetic field due to solenoid is given by
-------------eqn 2
Now dividing eqn 1 by eqn 2

It says on a website that humidity can be measured by human hair.