Answer:
28.23 years
Explanation:
I = 1100 A
L = 230 km = 230, 000 m
diameter = 2 cm
radius, r = 1 cm = 0.01 m
Area, A = 3.14 x 0.01 x 0.01 = 3.14 x 10^-4 m^2
n = 8.5 x 10^28 per cubic metre
Use the relation
I = n e A vd
vd = I / n e A
vd = 1100 / (8.5 x 10^28 x 1.6 x 10^-19 x 3.14 x 10^-4)
vd = 2.58 x 10^-4 m/s
Let time taken is t.
Distance = velocity x time
t = distance / velocity = L / vd
t = 230000 / (2.58 x 10^-4) = 8.91 x 10^8 second
t = 28.23 years
False the strength off the magnet lessens the farther you get from it
Answer:
yes
Explanation:
because when you slow down, the resistance slows with the speed.
Answer:
1.7 seconds
Explanation:
To clear the intersection, the total distance to be covered = 59.7 + 25 =84.7m
first we need to find the initial speed to just enter the intersection by using the third equation of motion
v^2 - u^2 = 2*a*s
45^2 - u^2 = 2 * -5.7 * 84.7
u^2 = 45^2 +965.58
u^2 = 2990.58
u = 54.7 m/s
Now for time we apply the first equation of motion
v-u =a * t
t = (v-u)/a = (45 - 54.7)/-5.7 = 1.7seconds
Answer:
36 N
Explanation:
Velocity of a standing wave in a stretched string is:
v = √(T/ρ),
where T is the tension and ρ is the mass per unit length.
300 m/s = √(T / 4×10⁻⁴ kg/m)
T = 36 N