Answer:
ΔU = - 310.6 J (negative sign indicates decrease in internal energy)
W = 810.6 J
Explanation:
a.
Using first law of thermodynamics:
Q = ΔU + W
where,
Q = Heat Absorbed = 500 J
ΔU = Change in Internal Energy of Gas = ?
W = Work Done = PΔV =
P = Pressure = 2 atm = 202650 Pa
ΔV = Change in Volume = 10 L - 6 L = 4 L = 0.004 m³
Therefore,
Q = ΔU + PΔV
500 J = ΔU + (202650 Pa)(0.004 m³)
ΔU = 500 J - 810.6 J
<u>ΔU = - 310.6 J (negative sign indicates decrease in internal energy)</u>
<u></u>
b.
The work done can be simply calculated as:
W = PΔV
W = (202650 Pa)(0.004 m³)
<u>W = 810.6 J</u>
Answer: Electromagnetic waves are generated by moving electrons. An electron generates an electric field which we can visualize as lines radiating from the electron Figure 10a. If the electron moves, say it vibrates back and forth, then this motion will be transferred to the field lines and they will become wavy Figure 10b.
Solution :
The given figure is a loop of a wire with a resistor.
When the switch S is closed for long time and is suddenly opened, the direction of the induced current can be find out by using the rule of right hand screw. According to the right hand screw rule, the direction of the magnetic field at the loop is in the direction that points outwards. The strength of the current rapidly decreases as it is switch off and the magnetic flux that is linked with the loop wire will also decrease.
According to the Lenz's law, the direction of the induced current must be such
the decrease in the magnetic flux. It means the direction of the magnetic field must be outwards and also normal to the plane of the screen. The direction of the induced anti clockwise or from right to left in the resistance.
Answer: T is greater
Explanation:
Since the elevator is moving against gravity more work will be done on the rope
T= m(g+a)
Answer:
distance between the dime and the mirror, u = 0.30 m
Given:
Radius of curvature, r = 0.40 m
magnification, m = - 2 (since,inverted image)
Solution:
Focal length is half the radius of curvature, f = 
f = 
Now,
m = - 
- 2 = -
= 2 (2)
Now, by lens maker formula:


v =
(3)
From eqn (2):
v = 2u
put v = 2u in eqn (3):
2u = 
2 = 
2(u - 0.20) = 0.20
u = 0.30 m