Answer:
Approximately
if that athlete jumped up at
. (Assuming that
.)
Explanation:
The momentum
of an object is the product of its mass
and its velocity
. That is:
.
Before the jump, the speed of the athlete and the earth would be zero (relative to each other.) That is:
and
. Therefore:
and
.
Assume that there is no force from outside of the earth (and the athlete) acting on the two. Momentum should be conserved at the instant that the athlete jumped up from the earth.
Before the jump, the sum of the momentum of the athlete and the earth was zero. Because momentum is conserved, the sum of the momentum of the two objects after the jump should also be zero. That is:
.
Therefore:
.
.
Rewrite this equation to find an expression for
, the speed of the earth after the jump:
.
The mass of the athlete needs to be calculated from the weight of this athlete. Assume that the gravitational field strength is
.
.
Calculate
using
and
values from the question:
.
The negative sign suggests that the earth would move downwards after the jump. The speed of the motion would be approximately
.
Different stages of the cycle gives off different wavelengths of light because more types elements are being made as you go farther down the cycle. So looking at the wavelengths that the light gives off can determine what stage a star is currently in
Answer:
1.16cm were cut off the end of the second pipe
Explanation:
The fundamental frequency in the first pipe is,
<em><u>Since the speed of sound is not given in the question, we would assume it to be 340m/s</u></em>
f1 = v/4L, where v is the speed of sound and L is the length of the pipe
266 = 340/4L
L = 0.31954 m = 0.32 m
It is given that the second pipe is identical to the first pipe by cutting off a portion of the open end. So, consider L’ be the length that was cut from the first pipe.
<u>So, the length of the second pipe is L – L’</u>
Then, the fundamental frequency in the second pipe is
f2 = v/4(L - L’)
<u>The beat frequency due to the fundamental frequencies of the first and second pipe is</u>
f2 – f1 = 10hz
[v/4(L - L’)] – 266 = 10
[v/4(L – L’)] = 10 + 266
[v/4(L – L’)] = 276
(L - L’) = v/(4 x 276)
(L – L’) = 340/(4 x 276)
(L – L’) = 0.30797
L’ = 0.31954 – 0.30797
L’ = 0.01157 m = 1.157 cm ≅ 1.16cm
Hence, 1.16 cm were cut from the end of the second pipe
Transverse( propagation perpendicular vibration)
Longitudinal ( propagation parallel vibration)
Answer:
go to the link quizzlet it will give you tha answer
Explanation: