Initially its moving with tail wind so here the speed of wind will support the motion of the plane
so we can say



now when its moving with head wind we can say that wind is opposite to the motion of the plane



now by using above two equations we can find speed of palne as well as speed of wind


Answer:
Your correct answer is D. The period is proportionalto the suspended mass.
Explanation:
Please mark brainliest :)
Answer:
Answer 3: When a balloon goes up higher in the air, its size will increase. Since there's less air in the upper atmosphere, there's less stuff pushing back on the balloon, and hence the pressure is lower, which allows the balloon to expand
Answer: C
Explanation:
As the balloon rises, the gas inside the balloon expands because the atmospheric pressure surrounding the balloon drops. The atmosphere is 100 to 200 times less dense at the float altitudes than on the ground. and as the air is heated inside the balloon it causes it to rise upwards (because it is lighter than the cooler air on the outside). When the pilot needs to bring the balloon down again, he simply reduces the temperature of the air inside the balloon causing it to slowly descend.
Answer: Option A: The spots on the balloon move away as the balloon is inflated.
one of the scientific models describes the galaxies are moving apart as the universe is expanding. This expansion theory came from the observation of red-shifted spectrum from all the directions indicating that the galaxies are moving away. This can be understood from the inflated balloon. Initially spots can be marked using a colored pen on the balloon.On inflating the balloon, it would be noticed that the spots on the balloon move away. Actually the position of the spots won't change, but the distance between the spots would expand. This is a good model to explain the expanding universe. The galaxies are neither moving in any random direction nor moving forward. So, rest of the options are not good models to explain the theory.
The wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats.