Answer:



Explanation:
= Mass of baby = 3 kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Distance between objects
Gravitational force of attraction is given by

The force between baby and obstetrician is 

The force between the baby and Jupiter is 

The force between the baby and Jupiter is 
Answer:

Explanation:
The rotation rate of the man is:



The resultant rotation rate of the system is computed from the Principle of Angular Momentum Conservation:
![(90\,kg)\cdot (5\,m)^{2}\cdot (0.16\,\frac{rad}{s} ) = [(90\,kg)\cdot (5\,m)^{2}+20000\,kg\cdot m^{2}]\cdot \omega](https://tex.z-dn.net/?f=%2890%5C%2Ckg%29%5Ccdot%20%285%5C%2Cm%29%5E%7B2%7D%5Ccdot%20%280.16%5C%2C%5Cfrac%7Brad%7D%7Bs%7D%20%29%20%3D%20%5B%2890%5C%2Ckg%29%5Ccdot%20%285%5C%2Cm%29%5E%7B2%7D%2B20000%5C%2Ckg%5Ccdot%20m%5E%7B2%7D%5D%5Ccdot%20%5Comega)
The final angular speed is:

This is the answer your welcome
Answer:
<u></u>
- <u>See attached the ray diagram with the path of Ray 1, which must pass through the focal point, F.</u>
Explanation:
The <em>curved mirror</em> shown is a converging lens.
<em>To find the location and size of the image</em> formed by a converging lens, you must draw two rays: one ray is from the upper tip of the object (the pen in your figure) that is in front of the mirror, parallel to the horizontal axis until the lens (<em>Ray 1</em> in your figure) which then bends through the focal point (F in your figure). That is the ray that you must complete in your figure.
The attached figure shows this ray in blue.
The other ray would be from the upper tip of the pen straight through the center of the lens (this is not included in the figure, by instructions of the question).
Explanation:
Momentum before collision:
(2 kg) (4 m/s) + (5 kg) (-3 m/s) = -3 kg m/s
No external forces act on the balls, so momentum is conserved. Therefore, momentum after collision is also -3 kg m/s.