Entropy is the measure of the amount of disordered in a system.
<u>Explanation:</u>
In 1850, Entropy introduction by the German physicist Rudolf Clausius refers a measurement of the system's thermal energy in unit temperature. It is not for useful work because the work originates from ordered molecular motions. And, this also measures the molecular disturbance or randomness of the system.
The concept behind this provides deep view into spontaneous changes in many everyday phenomena’s. The idea of entropy is a mathematical way of coding an intuitive idea whose processes are impossible, and not violate the basic principle of energy conservation.
Answer:
The dependent variable is academic performance
The independent variable is the presence/absence of tutorial support
The control group are students who did not get the tutorial support.
The experimental group were students that got the tutorial support
Explanation:
In every experiment, there is a dependent and independent variable as well as an experimental and a control group.
The experimental group receive the treatment while the control group do not receive the treatment. The independent variable is manipulated and its impact on the dependent variable is evaluated.
The control group are students who did not receive the tutorial support while the experimental group are students that received the tutorial support.
The dependent variable in this case is academic performance. Its outcome depends on the presence or absence of tutorial support (independent variable).
As soon as you let go of it it is at its max speed because gravity is constantly pulling it down
Galaxies are sprawling systems of dust, gas, dark matter, and anywhere from a million to a trillion stars that are held together by gravity. Nearly all large galaxies are thought to also contain supermassive black holes at their centers.
Answer:
Answer is A
Explanation:
As we know , for constant velocity we get a straight line.
The formula for this problem is s = vt which is similar to a straight line formula like y = mx + c.
If we put here c = 0 we get the formula for distance and velocity.
So the answer is A.