Answer: The electric field is: a) r<a , E0=; b) a<r<b E=ρ (r-a)/εo;
c) r>b E=ρ b (b-a)/r*εo
Explanation: In order to solve this problem we have to use the Gaussian law in diffrengios regions.
As we know,
∫E.dr= Qinside/εo
For r<a --->Qinside=0 then E=0
for a<r<b er have
E*2π*r*L= Q inside/εo in this case Qinside= ρ.Vol=ρ*2*π*r*(r-a)*L
E*2π*r*L =ρ*2*π*r* (r-a)*L/εo
E=ρ*(r-a)/εo
Finally for r>b
E*2π*r*L =ρ*2*π*b* (b-a)*L/εo
E=ρ*b* (b-a)*/r*εo
A single photon carries an energy equal to

where h is the Planck's constant and f is the frequency of the photon.
This means that the higher the frequency of the light, the higher the energy. Among the 5 different options mentioned by the problem, the light with highest frequency is ultraviolet, which has frequencies in the range [3-30] PHz, while visible light (red, blue, green) and infrared have lower frequency, so ultraviolet light has the highest energy per photon.
<h3><u>Answer;</u></h3>
<u> = 55.2 Coulombs </u>
<h3><u>Explanation</u>;</h3>
We can determine Charge using the formula
Q =It, where Q is the amount of charge in Coulombs, I is the current in amperes and t is the time in seconds.
I = 0.92 amperes, t = 1 minute or 60 seconds
Charge = 0.92 × 60
<u> = 55.2 Coulombs </u>
The drag force acting on the rocket is 80N.
<h3>Give an explanation of drag force?</h3>
The divergence in velocity between the fluid and the item, also known as drag, exerts a force on it. Between the liquid and the solid object, there should be motion. Drag is absent in the absence of motion.
The air molecules are more compressed (pushed together) on the surfaces that are facing the front while being more dispersed (spread out) on the surfaces facing the back. Turbulent flow, which occurs when air layers split from the surface and start to swirl, is what causes this.
The drag force acting on the rocket F = ma
Given,
m = 4kg, a = 20ftm/s²
Substituting m and a values in the above formula,
The drag force acting on the rocket F = 4×20
The drag force acting on the rocket F = 80N.
To know more about drag force visit:
brainly.com/question/15144984
#SPJ4