Answer:
the branch of mechanics concerned with the interaction of electric currents with magnetic fields or with other electric currents.
Explanation:
Answer:
The right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²
Explanation:
Thickness of the wall is L= 20cm = 0.2m
Thermal conductivity of the wall is K = 2.79 W/m·K
Temperature at the left side surface is T₁ = 50°C
Temperature of the air is T = 22°C
Convection heat transfer coefficient is h = 15 W/m2·K
Heat conduction process through wall is equal to the heat convection process so

Expression for the heat conduction process is

Expression for the heat convection process is

Substitute the expressions of conduction and convection in equation above


Substitute the values in above equation

Now heat flux through the wall can be calculated as

Thus, the right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²
Answer:
The gravitational force is related to the mass of each object.
The gravitational force is an attractive force.
Explanation:
Gravitational force is a long range force of attraction between any two masses.
Mathematically given as :

where:
are the masses
r= distance between the center of mass of the two objects.
G= gravitational constant = 
From the above relation of eq. (1) it is clear that,
Gravitational force is inversely proportional to the square of the distance and directly proportional to the masses.
The mass of an object is independent of its size due to the fact that density may vary for different objects.
The force of gravity varies with height as:

where:

gravity at height
of the center of mass of the object from the center of mass of the earth.
and we know that force:

where: m= mass of the object.
Answer:
C. it will not change.
Explanation:
While combing, the rubbing of the comb with the hair, transfer of electron takes place from the hair to the comb and the comb becomes negatively charged. But, this transfer of electron does not make any considerable change in the mass of the hair. This is because the mass of an electron is highly negligible. Now, neglecting the mass of an electron, the transfer of the electrons from the hair to the comb makes charging of the comb, but no loss of mass in the hair. So, the mass of hair will no change.