<span>The answer is letter D.
The most important step in formulation a scientific inquiry is to first formulate a question. All answers sprung from a question that scratched the mind. Experimentation is not possible without the need to question, with this, the drive to find the answers is what motivates scientists or people involved in an experiment to find the answers that would suffice their curiosity. Questions are the basis of all the other choices above and is the most crucial step in the scientific inquiry.<span>
</span></span>
The change in velocity is +4 m/s to the right (or -4 m/s to the left).
The object's mass is irrelevant.
Speed of the car given initially
v = 18 m/s
deceleration of the car after applying brakes will be
a = 3.35 m/s^2
Reaction time of the driver = 0.200 s
Now when he see the red light distance covered by the till he start pressing the brakes


Now after applying brakes the distance covered by the car before it stops is given by kinematics equation

here
vi = 18 m/s
vf = 0
a = - 3.35
so now we will have


So total distance after which car will stop is


So car will not stop before the intersection as it is at distance 20 m
I don't like the wording of any of the choices on the list.
SONAR generates a short pulse of sound, like a 'peep' or a 'ping',
focused in one direction. If there's a solid object in that direction,
then some of the sound that hits it gets reflected back, toward the
source. The source listens to hear if any of the sound that it sent
out returns to it. If it hears its own 'ping' come back, it measures
the time it took for the sound to go out and come back. That tells
the SONAR equipment that there IS a solid object in that direction,
and also HOW FAR away it is.
RADAR works exactly the same way, except RADAR uses radio waves.
Answer:
3.125J
Explanation:
K.E.= 1/2(mass)(velocity)^2
K.E.=1/2(0.25)(5)^2=3.125