Answer:
Magnification= -image distance/object distance
.253=image distance/33.5
image distance= 8.48 cm
F~1/r²
doubling the distance r, Decreases the force by ¼
Answer:
<h2>9.8 m/s²</h2>
Explanation:
<h2>Since the ball rises for 2.5 s, the time to fall is 2.5 s. The acceleration is 9.8 m/s2 everywhere, even when the velocity is zero at the top of the path. Although the velocity is zero at the top, it is changing at the rate of 9.8 m/s² downward.</h2>
Answer:
shrinks with all the fringes getting narrower
Explanation:
As the light passes through the slit, the diffraction pattern shrinks, as the waves have more opening to penetrate, and the fringes becomes more narrow as a result of that, The opposite happens as the conditions are reversed.
Answer:
B. 6 cm
Explanation:
First, we calculate the spring constant of a single spring:

where,
k = spring constant of single spring = ?
F = Force Applied = 10 N
Δx = extension = 4 cm = 0.04 m
Therefore,

Now, the equivalent resistance of two springs connected in parallel, as shown in the diagram, will be:

For a load of 30 N, applying Hooke's Law:

Hence, the correct option is:
<u>B. 6 cm</u>