When an object is falling and reaches a constant velocity, the net force on the object is <em>zero</em> (it's not accelerating), and the weight of the object is equal to <em>the force of air resistance against the object</em>. (choice-D)
Car A take a time of 2.55hr and car B take a time of 2.14 hr
We know that distance divide by time is speed
here it is given that car A to reach a gas station a distance 189 km from the school traveling at a speed of 74 km/hr
so speed=distance/time
s=d/t
t=d/s
=189/74
=2.55hr
In case of car B it is given that The distance from the is 199.8km, car b is traveling at a speed of 93 km/hr
s=d/t
t=d/s
=199.8/93
=2.14hr
so from the above given data and the formula we solved and found out the time taken by car A is 2.55h and car B is 2.14h
learn more about Speed here brainly.com/question/13943409
#SPJ9
Answer:
Explanation:
a ) Conservation of momentum is followed
m₁ v₁ = m₂ v₂
3m x 2 = m v
v = 6 m/s
Total kinetic energy
= 1/2 x .35 x 6 ² + 1/2 x 1.05 x 2 ²
= 8.4 J
This energy must be stored as elastic energy in the spring which was released as kinetic energy on burning the cord.
Yes , the conservation of momentum will be followed in the bursting apart process. Only internal forces have been involved in the process. Two equal and opposite internal forces are created by spring which creates motion and generates kinetic energy.
The centripetal force is force acting on a body in circular motion. In circular motion, velocity is always on tangent and if we took 2 different positions on a circle, the change on velocity is a vector pointing in the middle of circle. In circular motion velocity is constant, and acceleration lies on radius of circle pointing to te middle. This acceleration is called centripetal acceleration, and the force is centripetal.