Answer:
5/9
Step-by-step explanation:
Let the probability of getting a multiple of 3 is "A"
Let the probability of getting an even number is "B"
Total number of outcomes=36
Total number of favourable outcomes of either a multiple of 3 or an even number are
(1,1) ,(1,2) ,(2,1) ,(1,3) ,(3,1) ,(2,2) ,(1,5) (5,1) ,(3,3) ,(2,4) ,(4,2) ,(2,6) ,(6,2) ,(3,5) ,(5,3) ,(4,4) ,(6,4) ,(4,6) ,(5,5) ,(6,6)
That is we have 20 favourable outcomes
Hence, ![Probability=\frac{\text{favourable outcomes}}{\text{total number of outcomes}}](https://tex.z-dn.net/?f=Probability%3D%5Cfrac%7B%5Ctext%7Bfavourable%20outcomes%7D%7D%7B%5Ctext%7Btotal%20number%20of%20outcomes%7D%7D)
Therefore, after substituting the values we get
![probability=\frac{20}{36}](https://tex.z-dn.net/?f=probability%3D%5Cfrac%7B20%7D%7B36%7D)
After simplification we will get
![probability=\frac{5}{9}](https://tex.z-dn.net/?f=probability%3D%5Cfrac%7B5%7D%7B9%7D)