Answer:

Explanation:
Hello!
In this case, since the molarity is defined as moles of solute divided by liters of solution, since we have phenol with a molar mass of 94.12 g/mol, we can first compute the moles in 1.5 g of phenol:

Next, since 1000 mL = 1 L, we notice that the volume of the solution is 0.100 L and therefore, the molarity of such solution turns out:

Best regards!
We have a solution of NaOH and H₂CO₃
First, NaOH will dissociate into Na⁺ and OH⁻ ions
The Na⁺ ion will substitute one of the Hydrogen atoms on H₂CO₃ to form NaHCO₃
The H⁺ released from the substitution will bond with the OH⁻ ion to form a water molecule
If there were to be another NaOH molecule, a similar substitution will take place, substituting the second hydrogen from H₂CO₃ as well to form Na₂CO₃
Answer:
the anwser would be B obtain energy
Explanation:
Answer:
See explaination
Explanation:
See attachment for the drawing of the intermediate products b and c (both are neutral; omit byproducts).