1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenaWriter [7]
3 years ago
5

What is the (magnitude of the) centripetal acceleration (as a multiple of g=9.8~\mathrm{m/s^2}g=9.8 m/s ​2 ​​ ) towards the Eart

h's axis of a person standing on the surface of the Earth at a latitude of 71.9^{\circ}71.9 ​∘ ​​ ?

Physics
1 answer:
Wittaler [7]3 years ago
6 0

Answer:

The centripetal acceleration as a multiple of g=9.8 m/s^{2} is 1.020x10^{-3}m/s^{2}

Explanation:

The centripetal acceleration is defined as:

a = \frac{v^{2}}{r}  (1)

Where v is the velocity and r is the radius

Since the person is standing in the Earth surfaces, their velocity will be the same of the Earth. That one can be determined by means of the orbital velocity:

v = \frac{2 \pi r}{T}  (2)

Where r is the radius and T is the period.

For this case the person is standing at a latitude 71.9^{\circ}. Remember that the latitude is given from the equator. The configuration of this system is shown in the image below.

It is necessary to use the radius at the latitude given. That radius can be found by means of trigonometric.

\cos \theta = \frac{adjacent}{hypotenuse}

\cos \theta = \frac{r_{71.9^{\circ}}}{r_{e}} (3)

Where r_{71.9^{\circ}} is the radius at the latitude of 71.9^{\circ} and r_{e} is the radius at the equator (6.37x10^{6}m).

r_{71.9^{\circ}} can be isolated from equation 3:

r_{71.9^{\circ}} = r_{e} \cos \theta  (4)

r_{71.9^{\circ}} = (6.37x10^{6}m) \cos (71.9^{\circ})

r_{71.9^{\circ}} = 1.97x10^{6} m

Then, equation 2 can be used

v = \frac{2 \pi (1.97x10^{6} m)}{24h}

Notice that the period is the time that the Earth takes to give a complete revolution (24 hours), this period will be expressed in seconds for a better representation of the velocity.

T = 24h . \frac{3600s}{1h} ⇒ 84600s

v = \frac{2 \pi (1.97x10^{6} m)}{84600s}

v = 146.31m/s

Finally, equation 1 can be used:

a = \frac{(146.31m/s)^{2}}{(1.97x10^{6}m)}

a = 0.010m/s^{2}

Hence, the centripetal acceleration is 0.010m/s^{2}

To given the centripetal acceleration as a multiple of g=9.8 m/s^{2}​ it is gotten:

\frac{0.010m/s^{2}}{9.8 m/s^{2}} = 1.020x10^{-3}m/s^{2}

You might be interested in
A high jumper jumps 2.04 m. If the jumper has a mass of 67 kg, what is his gravitational potential energy at the highest point i
Mariulka [41]

Answer: 1339.5 joules

Explanation:

Gravitational potential energy, GPE is the energy possessed by the jumper as he moves against gravity.

Thus, GPE = Mass m x Acceleration due to gravity g x Height h

Since Mass = 67kg

g = 9.8m/s^2

h = 2.04 metres

Thus, GPE = 67kg x 9.8m/s^2 x 2.04m

GPE = 1339.5 joules

Thus, the gravitational potential energy at the highest point is 1339.5 joules

3 0
3 years ago
A box slides down a frictionless incline, gaining speed. The work done by the normal force n is _______.
jeka57 [31]

The work done by the normal force n when the box slides down a frictionless incline and gaining speed is zero.

<h3>What is normal force?</h3>

The force of contact is called the normal force. When the two surfaces are in contact with each other, then the normal force acts.

This force is applied by the solid bodies on each other in order to prevent the passing through each other.

A box slides down a frictionless incline, gaining speed. For this box, the value of work done by normal force has to be found out. Let's analyze the given condition.

  • The body is gaining the speed, which means there is a change in kinetic energy.
  • The change in kinetic energy is equal to the work done.
  • The friction force is the product of coefficient of the friction and normal force.
  • The friction force for the given case is zero. Thus, the normal force must be equal to the zero.

Thus, the work done by the normal force n when the box slides down a frictionless incline and gaining speed is zero.

Learn more about the normal force here;

brainly.com/question/10941832

7 0
2 years ago
Read 2 more answers
True or False? PLEASE HELP ME​
viva [34]

Answer:

a. True - Joules is the unit measure for energy.

b. False - Potential energy is associated with position

c. False - Kinetic energy is associated with movement.

d. False - It's climbing, which means it also has kinetic energy.

6 0
3 years ago
Which is the correct answer ?
hodyreva [135]
D ............................
7 0
4 years ago
Read 2 more answers
Determine the length of the object shown <br> 1.2 cm <br> 1.3 cm <br> 1.25 cm <br> 1.250 cm
stiks02 [169]

The correct answer is 1.25 because it is 1/2 of 1 1/2 and that is 1.25.

6 0
3 years ago
Read 2 more answers
Other questions:
  • A converging lens brings rays of light together at a focal point. The bending of light rays is the result ofA. A combination of
    8·1 answer
  • A hot-water stream at 80 ℃ enters a mixing chamber with a mass flow rate of 0.5 kg/s where it is mixed with a stream of cold wat
    13·1 answer
  • The Sun transfers energy to the atmosphere primarily by _____.
    12·1 answer
  • If we connect a third bulb in our series circuit, say one with 4
    6·1 answer
  • what is the magnitude of g at a height above earth surface where free fall acceleration equal 6.5m/s2
    11·1 answer
  • In Ch. 1.6, the authors point out that interstellar space is not actually as empty as it seems. There is actually a lot of diffu
    12·1 answer
  • The compressor on an air conditioner draws 35.0 A when it starts up. If the start-up time is 0.59 s, how much charge passes a cr
    6·1 answer
  • value of the refractive index of lens is 2.5 The curved surfaces are having The radius of curvature 10 cm and -12cm Out The foca
    15·2 answers
  • help me please ASAP ​
    10·1 answer
  • Name 3 different types of graphs that can be used to plot data.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!