Answer:
<h2>15 ball in your face per hour </h2>
Explanation:
The magnitude of the angular momentum of the two-satellite system is best represented as, L=m₁v₁r₁-m₂v₂r₂.
<h3>What is angular momentum.?</h3>
The rotational analog of linear momentum is angular momentum also known as moment of momentum or rotational momentum.
It is significant in physics because it is a conserved quantity. the total angular momentum of a closed system remains constant. Both the direction and magnitude of angular momentum are conserved.
The magnitude of the angular momentum of the two-satellite system is best represented as;
L=∑mvr
L=m₁v₁r₁-m₂v₂r₂
Hence, the magnitude of the angular momentum of the two-satellite system is best represented as, L=m₁v₁r₁-m₂v₂r₂.
To learn more about the angular momentum, refer to the link;
brainly.com/question/15104254
#SPJ4
Answer:
The final temperature of the gas is <em>114.53°C</em>.
Explanation:
Firstly, we calculate the change in internal energy, ΔU from the first law of thermodynamics:
ΔU=Q - W
ΔU = 1180 J - 2020 J = -840 J
Secondly, from the ideal gas law, we calculate the final temperature of the gas, using the change in internal energy:


Then we make the final temperature, T₂, subject of the formula:



Therefore the final temperature of the gas, T₂, is 114.53°C.