1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
patriot [66]
3 years ago
9

A sewage lagoon that has a surface area of 10 ha and a depth of 1 m is receiving 8,640 m^3 /d of sewage containing 100 mg/L of b

iodegradable contaminant. At steady state, the effluent from the lagoon must not exceed 20 mg/L of biodegradable contaminant. Assuming the lagoon is well mixed and that there are no losses or gains of water in the lagoon other than the sewage input, what biodegradation reaction rate coefficient (d^-1) must be achieved for a first-order reaction?
Engineering
1 answer:
Marysya12 [62]3 years ago
6 0

Answer: Coefficient= 0.35 per day

Explanation:

To find the bio degradation reaction rate coefficient, we have

k= \frac{(Cin)(Qin)-(Cout)(Qout)}{(Clagoon)V}

Here, the C lagoon= 20 mg/L

Q in= Q out= 8640 m³/d

C in= 100 mg/L

C out= 20 mg/L

V= 10 ha* 1* 10

V= 10⁵ m³

So, k= \frac{8640*100-8640*20}{20*10^5}

k= 0.35 per day

You might be interested in
The idling engines of a landing turbojet produce forward thrust when operating in a normal manner, but they can produce reverse
sertanlavr [38]

Answer:

T = 5416.67 N

T = -2083.5 N

T = 0

Explanation:

Forward thrust has positive values and reverse thrust has negative values.

part a

Flight speed u = ( 150 km / h ) / 3.6 = 41.67 km / s

The thrust force represents the horizontal or x-component of momentum equation:

T = flow(m_{exhaust})*(u_{exhaust} - u_{flight} )\\T = (50 kg/s ) * (150 - 41.67)\\\\T = 5416.67 N

Answer: The thrust force T = 5416.67 N

part b

Now the exhaust velocity is now vertical due to reverse thrust application, then it has a zero horizontal component, thus thrust equation is:

T = flow(m_{exhaust})*(u_{exhaust} - u_{flight} )\\T = (50 kg/s ) * (0 - 41.67)\\\\T = -2083.5 N

Answer: The thrust force T = -2083.5 N reverse direction

part c

Now the exhaust velocity and flight velocity is zero, then it has a zero horizontal component, thus thrust is also zero as there is no difference in two velocities in x direction.

Answer: T = 0 N

5 0
3 years ago
James River Jewelry is a small jewelry shop. While James River Jewelry does sell typical jewelry purchased form jewelry vendors,
Sveta_85 [38]

Answer:

This question is comprising many parts (a to r). That is impossible to answer in one sheet. Following are attached images having answers to most of the parts.

I hope it will help you a lot.

Explanation:

7 0
3 years ago
Using the celsius_to_kelvin function as a guide, create a new function, changing the name to kelvin_to_celsius, and modifying th
aleksandr82 [10.1K]

Answer:

# kelvin_to_celsius function is defined

# it has value_kelvin as argument

def kelvin_to_celsius(value_kelvin):

   # value_celsius is initialized to 0.0

   value_celsius = 0.0

   

   # value_celsius is calculated by

   # subtracting 273.15 from value_kelvin

   value_celsius = value_kelvin - 273.15

   # value_celsius is returned

   return value_celsius

   

# celsius_to_kelvin function is defined

# it has value_celsius as argument

def celsius_to_kelvin(value_celsius):

   # value_kelvin is initialized to 0.0

   value_kelvin = 0.0

   

   # value_kelvin is calculated by

   # adding 273.15 to value_celsius

   value_kelvin = value_celsius + 273.15

   # value_kelvin is returned

   return value_kelvin

   

value_c = 0.0

value_k = 0.0

value_c = 10.0

# value_c = 10.0 is used to test the function celsius_to_kelvin

# the result is displayed

print(value_c, 'C is', celsius_to_kelvin(value_c), 'K')

value_k = 283.15

# value_k = 283.15 is used to test the function kelvin_to_celsius

# the result is displayed

print(value_k, 'is', kelvin_to_celsius(value_k), 'C')

Explanation:

Image of celsius_to_kelvin function used as guideline is attached

Image of program output is attached.

4 0
3 years ago
The thermal efficiency of two reversible power cycles operating between the same thermal reservoirs will a)- depend on the mecha
mestny [16]
C ,, i’m pretty sure .
4 0
3 years ago
Steam enters a two-stage adiabatic turbine at 8 MPa and 5008C. It expands in the first stage to a state of 2 MPa and 3508C. Stea
Nataly [62]

Answer:

1) The exergy of destruction is approximately 456.93 kW

2) The reversible power output is approximately 5456.93 kW

Explanation:

1) The given parameters are;

P₁ = 8 MPa

T₁ = 500°C

From which we have;

s₁ = 6.727 kJ/(kg·K)

h₁ = 3399 kJ/kg

P₂ = 2 MPa

T₂ = 350°C

From which we have;

s₂ = 6.958 kJ/(kg·K)

h₂ = 3138 kJ/kg

P₃ = 2 MPa

T₃ = 500°C

From which we have;

s₃ = 7.434 kJ/(kg·K)

h₃ = 3468 kJ/kg

P₄ = 30 KPa

T₄ = 69.09 C (saturation temperature)

From which we have;

h₄ = h_{f4} + x₄×h_{fg} = 289.229 + 0.97*2335.32 = 2554.49 kJ/kg

s₄ =  s_{f4} + x₄×s_{fg} = 0.94394 + 0.97*6.8235 ≈ 7.563 kJ/(kg·K)

The exergy of destruction, \dot X_{dest}, is given as follows;

\dot X_{dest} = T₀ × \dot S_{gen} = T₀ × \dot m × (s₄ + s₂ - s₁ - s₃)

\dot X_{dest} = T₀ × \dot W×(s₄ + s₂ - s₁ - s₃)/(h₁ + h₃ - h₂ - h₄)

∴ \dot X_{dest} = 298.15 × 5000 × (7.563 + 6.958 - 6.727 - 7.434)/(3399 + 3468 - 3138  - 2554.49) ≈ 456.93 kW

The exergy of destruction ≈ 456.93 kW

2) The reversible power output, \dot W_{rev} = \dot W_{} + \dot X_{dest} ≈ 5000 + 456.93 kW = 5456.93 kW

The reversible power output ≈ 5456.93 kW.

6 0
3 years ago
Other questions:
  • A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 4 MPa in the boiler and 25
    14·2 answers
  • A mass of 8000 kg of slightly enriched uranium (2% U-235, 98% U-238) is exposed for 30 days in a reactor operating at (6.18) hea
    5·1 answer
  • The fluid-conditioning components of hydraulic-powered equipment provide fluid that is clean and maintained at an acceptable ope
    6·1 answer
  • Different types of steels contain different elements that alter the characteristics of the steel. For each of the following elem
    6·1 answer
  • What do you need for an object to fly?
    10·1 answer
  • A single-phase inductive load draws a 10 MW at 0.6 power factor lagging. Calculate the reactive power of a capacitor to be conne
    14·1 answer
  • Traffic at a roundabout moves
    8·1 answer
  • The formula for the cross sectional area of specimen at the middle is
    5·1 answer
  • This question allows you to practice proving a language is non-regular via the Pumping Lemma. Using the Pumping Lemma (Theorem 1
    10·1 answer
  • Technician A that shielding gas nozzles may have different shapes. Technician B says that gelding gas nozzles is attached to the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!