Answer:
what do u need help with?
Explanation:
Answer:
2.8087*10^-12 kJ per mole of reaction (2.8087*10^-12 kJ/mol).
Explanation:
To calculate the energy produced, we need to write a balanced equation for the reaction and determine the change in the masses of the reactants and products. Afterward, we can use the energy equation to determine the energy produced. The balanced equation for the nuclear reaction is shown below:
³₁H + ²₁H ⇒⁴₂He + ¹₀n
The masses of atoms are ³₁H is 3.01605 amu, ²₁H is 2.0140 amu, ⁴₂He is 4.00260 amu, and ¹₀n is 1.008665 amu.
change in mass Δm = (3.01605+2.0140) - (4.00260+1.008665) = 0.0188 amu
Energy produced, E = m*C^2
C is the speed of light = 3*10^8 m/s and 1 amu = 1.66*10^-27 kg
Therefore:
E = 0.0188*1.66*10^-27 * (3*10^8)^2 = 2.8087*10^-12 kJ per mole of reaction.
Therefore, in scientific notation, the energy released is 2.8087*10^-12 kJ/mol
The muscles will contract and work together to contract in different ways
The method which is appropriate for separating a mixture of iron and aluminum is A. using a magnet.
This is because aluminum does not have magnetic properties (thus it will be unaffected by the magnet), so it is easy to sort out all iron from the mixture using a magnet.