In this case, according to the given information about the oxidation numbers anf the compounds given, it turns out possible to figure out the oxidation number of manganese in both MnI2, manganese (II) iodide and MnO2, manganese (IV) oxide, by using the concept of charge balance.
Thus, we can define the oxidation state of iodine and oxygen as -1 and -2, respectively, since the former needs one electron to complete the octet and the latter, two of them.
Next, we can write the following
, since manganese has five oxidation states, and it is necessary to calculate the appropriate ones:

Next, we multiply each anion's oxidation number by the subscript, to obtain the following:

Thus, the correct choice is Manganese has an oxidation number of +2 in Mnl2 and +4 in MnO2.
Learn more:
Barium, it's an earthy alkaline metal it's atomic number is 56
Answer:
The volume of the gas will be 78.31 L at 1.7 °C.
Explanation:
We can find the temperature of the gas by the ideal gas law equation:

Where:
n: is the number of moles
V: is the volume
T: is the temperature
R: is the gas constant = 0.082 L*atm/(K*mol)
From the initial we can find the number of moles:

Now, we can find the temperature with the final conditions:

The temperature in Celsius is:

Therefore, the volume of the gas will be 78.31 L at 1.7 °C.
I hope it helps you!
10g
Explanation:
Box 1, Mass of A = 10g
Box 2, Mass of B = 5g
Box 3, = 1A + 1B
Unknown:
Mass of B that would combine with mass of 20g of A
Solution:
Mass ratio of A to B:
= mass ratio
= mass ratio
The mass ratio of A to B = 2: 1
Now, number of B that will combine with 20g of A;
= mass ratio
= 
Mass of B = 10g
10g of B would combine with 20g of A
learn more:
Rate brainly.com/question/8677367
#learnwithBrainly
A covalent bond is the bond formed by the sharing of a pair of electrons by two atoms.
Your answer is D: A bond between two atoms.