The solution would be like this for this specific problem:
Given:
pH of a 0.55 M hypobromous
acid (HBrO) at 25.0 °C = 4.48
[H+] = 10^-4.48 = 3.31 x
10^-5 M = [BrO-] <span>
Ka = (3.31 x 10^-5)^2 / 0.55 = 2 x 10^-9</span>
To add, Hypobromous Acid does not require acid
adjustment, which is necessary for chlorine-based product and is stable and
effective in pH ranges of 5-9.<span>
</span>Hypobromous Acid combines with organic
compounds to form a bromamine. Chlorine also combines with the same organic
compounds to form a chloramine. <span>It is also
one of the least expensive intervention antimicrobial compounds available.</span>
The formula of the ppt. formed is PbSo4 , which is inslouble.
V=abc
a = 2,3cm
b=12,2mm = 1,22cm
c = 0,75inch = 1,905cm
V = 2,3cm*1,22cm*1,905cm ≈ 5,35cm³
The mass number of aluminium hydroxide is 78 thus, the number of moles in 0.745 g is:
no. of moles= mass/ RFM
= 0.745/78
=0.00955moles
Therefore the 0.00955 moles should be in the 35.18 ml
therefore 1000ml of the solution will have:
(0.00955ml×1000ml)/35.18
=0.2715moles
The solution will be 0.27M hydrochloric acid
Hey there!:
Answer : D
A water molecule can donate a proton to another water molecule, forming H3O⁺and OH⁻ in solution.
Hope this helps!