Answer:
Let f be force of friction on the blocks kept on inclined plane. T be tension in the string
For motion of block on the inclined plane in upward direction
T - m₁gsin40 - f = m₁a
f = μ m₁gcos40
For motion of hanging block on in downward direction
m₂g - T = m₂ a
Adding to cancel T
m₂g - - m₁gsin40 - μ m₁gcos40 = a ( m₁+m₂ )
a = g (m₂ - - m₁sin40 - μ m₁cos40) / ( m₁+m₂ )
Putting the values
a = 9.8 ( 4.75 - 2.12-1.045) / 7.6
2.04 m s⁻²
M₂ will go down and M₁ will go up with acceleration .
Explanation:
The electric force on the proton is:
F = Eq
F = electric force, E = electric field strength, q = proton charge
The gravitational force on the proton is:
F = mg
F = gravitational force, m = proton mass, g = gravitational acceleration
Since the electric force and gravitational force balance each other out, set their magnitudes equal to each other:
Eq = mg
Given values:
q = 1.60×10⁻¹⁹C, m = 1.67×10⁻²⁷kg, g = 9.81m/s²
Plug in and solve for E:
E(1.60×10⁻¹⁹) = 1.67×10⁻²⁷(9.81)
E = 1.02×10⁻⁷N/C
Velocities of their center of mass after collisions are found by the following formula as shown in the image:
<h3>What are elastic collisions?</h3>
- An elastic collision is one in which there is no energy lost during the impact. A moderately inelastic collision occurs when some energy is wasted yet the items do not cling together. The maximum amount of energy is wasted when the objects collide in a perfectly inelastic impact. The kinetic energy doesn't change.
- It may be two dimensions or one dimension. Because there will always be some energy exchange, no matter how tiny, totally elastic collision is not conceivable in the real world.
- While the overall system's linear momentum does not change, the individual momenta of the participating components do, and because these changes are equal and opposite in size and cancel each other out, the initial energy is conserved.
To learn more about Elastic collisions refer to:
brainly.com/question/2356330
#SPJ4