1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavlova-9 [17]
3 years ago
15

Determine the minimum work per unit of heat transfer from the source reservoir that is required to drive a heat pump with therma

l energy reservoirs at 460 K and 540 K.
Physics
1 answer:
Sloan [31]3 years ago
8 0

Answer:

The minimum work per unit heat transfer will be 0.15.

Explanation:

We know the for a heat pump the coefficient of performance (C_{HP}) is given by

C_{HP} = \dfrac{Q_{H}}{W_{in}}

where, Q_{H} is the magnitude of heat transfer between cyclic device and    high-temperature medium at temperature T_{H} and W_{in} is the required input and is given by W_{in} = Q_{H} - Q_{L}, Q_{L} being magnitude of heat transfer between cyclic device and low-temperature T_{L}. Therefore, from above equation we can write,

&& \dfrac{Q_{H}}{W_{in}} = \dfrac{Q_{H}}{Q_{H} - Q_{L}} = \dfrac{1}{1 - \dfrac{Q_{L}}{Q_{H}}} = \dfrac{1}{1 - \dfrac{T_{L}}{T_{H}}}

Given, T_{L} = 460 K and T_{H} = 540 K. So,  the minimum work per unit heat transfer is given by

\dfrac{W_{in}}{Q_{H}} = \dfrac{T_{H} - T_{L}}{T_{H}} = \dfrac{540 - 460}{540} = 0.15

You might be interested in
An 88.0 kg spacewalking astronaut pushes off a 645 kg satellite, exerting a 110 N force for the 0.450 s it takes him to straight
arlik [135]

Answer:

The astronaut and the satellite are 53.718 m apart.

Explanation:

Given;

mass of spacewalking astronaut, = 88 kg

mass of satellite, = 645 kg

force exerts by the satellite, F = 110N

time for this action, t = 0.45 s

Determine the acceleration of the satellite after the push

F = ma

a = F / m

a = 110 / 645

a = 0.171 m/s²

Determine the final velocity of the satellite;

v = u + at

where;

u is the initial velocity of the satellite = 0

v = 0 + 0.171 x 0.45

v = 0.077 m/s

Determine the displacement of the satellite after 1.4 m

d₁ = vt

d₁ = 0.077 x (1.4 x 60)

d₁ = 6.468 m

According to Newton's third law of motion, action and reaction are equal and opposite;

Determine the backward acceleration of the astronaut after the push;

F = ma

a = F / m

a = 110 / 88

a = 1.25 m/s²

Determine the final velocity of the astronaut

v = u + at

The initial velocity of the astronaut = 0

v = 1.25 x 0.45

v = 0.5625 m/s

Determine the displacement of the astronaut after 1.4 min

d₂ = vt

d₂ = 0.5625 x (1.4 x 60)

d₂ = 47.25 m

Finally, determine the total separation between the astronaut and the satellite;

total separation = d₁ + d₂

total separation = 6.468 m + 47.25 m

total separation = 53.718 m

Therefore, the astronaut and the satellite are 53.718 m apart.

7 0
3 years ago
What is neccessary for a magnetic field to create electric current in a copper coil?
Viktor [21]
A, Lenz' Law. There need to be a difference of flux, so if you use AC you will get a current too.
6 0
4 years ago
Amber moves from her desk to the door in 17 seconds. Her speed changes from rest to 5 m/s. What is Amber's average acceleration?
VMariaS [17]
Vf - vi/ time
5 - 0/17
0.29 m/s square
4 0
3 years ago
A 2200 kilogram car is accelerating at 3.4 m/s/s. what is the NET force?
sdas [7]
We Know, F = m*a
F = 2200 * 3.4
F = 7480 Kg m/s²

So, your final answer is 7480
7 0
3 years ago
In the equation for centripetal force, which expression represents the centripetal acceleration of the object? mv2 StartFraction
Sphinxa [80]

Answer: \frac{V^{2}}{r}

Explanation:

According to Newton's 2nd Law of motion the force F is proportional to the mass Fm and acceleration a:

F=m.a (1)

On the other hand, the equation for the Centripetal force is:

F=\frac{mV^{2}}{r} (2)

Where:

V is the velocity

r is the radius of the circular motion

Making (1) and (2) equal:

m.a=\frac{mV^{2}}{r} (3)

Hence:

a=\frac{V^{2}}{r} This is the expression for the centripetal acceleration

It should be noted, this acceleration is directed toward the center of the circumference of the circular motion (that's why it's called centripetal acceleration).

3 0
3 years ago
Read 2 more answers
Other questions:
  • Does light travels faster in a material with a higher index of refraction
    5·2 answers
  • Before lava reaches the surface the molten material is called what
    10·2 answers
  • The windmill has 7 blades and rotates at an angular speed of 0.5 rad/s. The opening between successive blades is equal to the wi
    8·1 answer
  • A particle moves along a circle with radius R, so that the tangential component of its acceleration is constant. At t = 0 the ve
    7·1 answer
  • A moon with a mass of 6.0 x 10 kg orbits about a planet with a mass of 5.0x 10^24 kg. They are 4.0 x 10^8 meters apart What is t
    11·1 answer
  • If the equation on the board had shown 3 atoms of carbon on the reactants side, how many atoms of carbon would need to be repres
    10·2 answers
  • Please help I'm having a mental breakdown
    7·1 answer
  • 5. A rolling ball is moving with a velocity of 8 m/s, on a frictionless surface. No
    8·1 answer
  • TRUE OR FALSE Determine if the following statements are true or false.
    11·1 answer
  • How does Newtons second law of motion relate to Track and field (running sport)?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!