Answer:
1.7
Explanation:
Density = M/V
When you divide 4.52 by 2.6, you get 1.738461538, which can be simplified to 1.7.
The correct answer for the question that is being presented above is this one: "16.7 degrees celsius."Glacial acetic acid is the concentrated form of acetic acid, the acid in vinegar. the term glacial refers to the appearance of the solid form, which <span>resembles glacial ice. </span>
Delta H = 24.32 kj/ mol and Delta S = 83.93 j/ mol . k
1 2 3 4 5 6 7 8 9 10 11 12 13 14
From 1-6.5 ph acidic
From 7-14 ph alkaline
Answer:
1. The pressure will be 32 atm, twice the initial pressure.
2. The pressure will be 1.83 atm, one third of the initial pressure.
Explanation:
Boyle's law is one of the gas laws that relates the volume and pressure of a certain quantity of gas kept at a constant temperature.
This law says that "The volume occupied by a given gaseous mass at constant temperature is inversely proportional to pressure." This means that if the pressure increases, the volume decreases, while if the pressure decreases, the volume increases.
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
or P * V = k
Ahora es posible suponer que tienes un cierto volumen de gas V1 que se encuentra a una presión P1 al comienzo del experimento. Si varias el volumen de gas hasta un nuevo valor V2, entonces la presión cambiará a P2, y se cumplirá:
P1*V1=P2*V2
1. In this case:
- P1= 16 atm
- V1
- P2= ?
- V2= V1÷2=
because the volume is halved.
So:
16 atm*V1= P2* 
Solving:
=P2
16 atm*2= P2
32 atm= P2
<u><em>The pressure will be 32 atm, twice the initial pressure.</em></u>
2. Now
- P1= 5.5 atm
- V1
- P2= ?
- V2= V1*3 because the volume is tripled.
So:
5.5 atm*V1= P2* V1*3
Solving:
=P2
= P2
1.83 atm= P2
<u><em>The pressure will be 1.83 atm, one third of the initial pressure.</em></u>
The model after John Dalton's was J.J Thompson's plum podding model in 1897, which described electrons as dots or raisins(if you will) in a circle shaped pudding that was entirely positive using a Cathode Ray Tube(shot cathode rays between magnets). The model after that is the Niels Bohr model in 1913, which depicts atoms like positively charged center called the nucleus with negatively charged particles called electrons in a shell or cloud.