Look up the answer online and look u the steps on how to do it as well it will help
Answer:
14.2L at STP
Explanation:
Based on the problem, 2 moles of NH3 produce 6 moles of HF. To solve this question we have to convert the mass of NH3 to moles. With the chemical equation find the moles of HF and using PV = nRT find the liters of HF:
<em>Moles NH3 -Molar mass: 17.031g/mol-</em>
3.6g NH3 * (1mol / 17.031g) = 0.211 moles NH3
<em>Moles HF:</em>
0.211 moles NH3 * (6mol HF / 2mol NH3) = 0.634 moles HF
<em>Volume HF</em>
PV = nRT; V = nRT/P
<em>Where V is volume in liters, n are moles of the gas = 0.634 moles, R is gas constant = 0.082atmL/molK, T is absolute temperature = 273.15K at STP and P is pressure = 1atm at STP.</em>
Replacing:
V = 0.634moles*0.082atmL/molK*273.15K / 1atm
V = 14.2L at STP
Answer:
I believe the answer is Newton's Second Law
Explanation:
Newton's Second Law states that the acceleration of an object will count on how much mass and the amount of force that is applied.
The bowling ball was dropped from the 10th story window and had more force than when the ball was dropped from the 5th story window because the 10th story window gave the bowling ball more acceleration.
Answer:
2 E16 Hz or 2 * 10^16 Hz
Explanation:
The formula to determine frequency is f = c / λ.
f = frequency
c = speed of light
λ = wavelength
f = 3E8 / 1.5E-8
f = 2E16
This makes sense because UV light exists roughly
between 8E14 Hz and 3E16 Hz ----- 2E16 Hz falls in that range