I believe that the answer is just liquids. While gases do take the shape of their containers, they don't have a defined volume. Solids don't take the shape of their containers, so the answer is liquids. I hope this helps!
Answer:
To prepare 50L of 32% solution you need: 11L of 30% solution, 22L of 50% solution and 17L of 10% solution.
Explanation:
A 32% solution of acid means 32L of acid per 100L of solution. As the chemist wants to make a solution using twice as much of the 50% solution as of the 30% solution it is possible to write:
2x*50% + x*30% + y*10% = 50L*32%
<em>130x + 10y = 1600 </em><em>(1)</em>
<em>-Where x are volume of 30% solution, 2x volume of 50% solution and y volume of 10% solution-</em>
Also, it is possible to write a formula using the total volume (50L), thus:
<em>2x + x +y = 50L</em>
<em>3x + y = 50L </em><em>(2)</em>
If you replace (2) in (1):
130x + 10(50-3x) = 1600
100x + 500 = 1600
100x = 1100
<em>x = 11L -Volume of 30% solution-</em>
2x = 22L -Volume of 50% solution-
50L - 22L - 11L = 17 L -Volume of 10% solution-
I hope it helps!
Answer:
The concentration of COF₂ at equilibrium is 0.296 M.
Explanation:
To solve this equilibrium problem we use an ICE Table. In this table, we recognize 3 stages: Initial(I), Change(C) and Equilibrium(E). In each row we record the <em>concentrations</em> or <em>changes in concentration</em> in that stage. For this reaction:
2 COF₂(g) ⇌ CO₂(g) + CF₄(g)
I 2.00 0 0
C -2x +x +x
E 2.00 - 2x x x
Then, we replace these equilibrium concentrations in the Kc expression, and solve for "x".
![Kc=8.30=\frac{[CO_{2}] \times [CF_{4}] }{[COF_{2}]^{2} } =\frac{x^{2} }{(2.00-2x)^{2} } \\8.30=(\frac{x}{2.00-2x} )^{2} \\\sqrt{8.30} =\frac{x}{2.00-2x}\\5.76-5.76x=x\\x=0.852](https://tex.z-dn.net/?f=Kc%3D8.30%3D%5Cfrac%7B%5BCO_%7B2%7D%5D%20%5Ctimes%20%5BCF_%7B4%7D%5D%20%7D%7B%5BCOF_%7B2%7D%5D%5E%7B2%7D%20%7D%20%3D%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B%282.00-2x%29%5E%7B2%7D%20%7D%20%5C%5C8.30%3D%28%5Cfrac%7Bx%7D%7B2.00-2x%7D%20%29%5E%7B2%7D%20%5C%5C%5Csqrt%7B8.30%7D%20%3D%5Cfrac%7Bx%7D%7B2.00-2x%7D%5C%5C5.76-5.76x%3Dx%5C%5Cx%3D0.852)
The concentration of COF₂ at equilibrium is 2.00 -2x = 2.00 - 2 × 0.852 = 0.296 M