Answer:
L = 2.83 J.s
Explanation:
The formula for the angular momentum of the stone is given as follows:
L = mvr
where,
L = angular momentum of the stone = ?
m = mass of the stone = 0.1 kg
v = linear velocity of the stone = rω
r = radius of circular path = 1.5 m
ω = angular speed of the stone = (2 rev/s)(2π rad/1 rev) = 4π rad/s
Therefore,
L = mvr = m(rω)r
L = mr²ω
using values, we get:
L = (0.1 kg)(1.5 m)²(4π rad/s)
<u>L = 2.83 J.s</u>
<h2>
Answer: 10615 nm</h2>
Explanation:
This problem can be solved by the Wien's displacement law, which relates the wavelength
where the intensity of the radiation is maximum (also called peak wavelength) with the temperature
of the black body.
In other words:
<em>There is an inverse relationship between the wavelength at which the emission peak of a blackbody occurs and its temperature.</em>
Being this expresed as:
(1)
Where:
is in Kelvin (K)
is the <u>wavelength of the emission peak</u> in meters (m).
is the <u>Wien constant</u>, whose value is 
From this we can deduce that the higher the black body temperature, the shorter the maximum wavelength of emission will be.
Now, let's apply equation (1), finding
:
(2)
Finally:
This is the peak wavelength for radiation from ice at 273 K, and corresponds to the<u> infrared.</u>
Answer:
when an object kept at some height and having some mass then ,when it falls down then shifting of energy takes place
200N
Explanation:
600N-400N = 200N
The work done in lifting the hamburger is equal to the increase in gravitational potential energy of the hamburger, given by

where
m=0.1 kg is the mass of the hamburger
is the gravitational acceleration
is the increase in height of the hamburger
Substituting numbers into the equation, we find

So, the correct answer is
(3) 0.3 J