1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vichka [17]
3 years ago
8

The boy on the tower throws a ball 20m downrange. What is his pitching speed?

Physics
1 answer:
san4es73 [151]3 years ago
5 0

Answer:

The pitching speed of the ball is 19.7 m/s

Explanation:

  • Here, we can use the third equation of motion,  v^{2} = u^{2} - 2as
  • whereas v represents the final velocity, u represents initial velocity, a is the acceleration due to gravity and s is the displacement or distance an object traveled
  • Here, the initial velocity of the the ball is given as  zero and the acceleration due to gravity is 9.8  , the distance 's' is given as 20 m
  • Using the equation,  v^{2} = 2 * 9.8 * 20 = 392\\v = \sqrt{392} = 19.7m/s
  • Hence, the pitching speed of the ball is 19.7 m/s

You might be interested in
This is 100 points. When i find out how i will put the first person to answer as brainiest.
grin007 [14]

Answer:

Thank you so much! Have a great day!

3 0
2 years ago
Consider a transformer. used to recharge rechargeable flashlight batteries, that has 500 turns in its primary coil, 3 turns in i
Rashid [163]

Answer:

<em>a) 0.72 V</em>

<em>b) 19.2 mA</em>

<em>c) 2.304 Watts</em>

Explanation:

A transformer is used to step-up or step-down voltage and current. It uses the principle of electromagnetic induction. When the primary coil is greater than the secondary coil, the it is a step-down transformer, and when the primary coil is less than the secondary coil, the it is a step-up transformer.

number of primary turns = N_{p} = 500 turns

input voltage = V_{p} = 120 V

number of secondary turns = N_{s} = 3 turns

output voltage = V_{s} = ?

using the equation for a transformer

\frac{V_{s} }{V_{p} }  = \frac{N_{s} }{N_{p} }

substituting values, we have

\frac{V_{s} }{120 }  = \frac{3 }{500} }

500V_{p}  = 120*3\\500V_{p} = 360

V_{p} = 360/500 =<em> 0.72 V</em>

<em></em>

b) by law of energy conservation,

I_{P}V_{p} = I_{s}V_{s}

where

I_{p} = input current = ?

I_{s} = output voltage = 3.2 A

V_{s} = output voltage = 0.72 V

V_{p} = input voltage = 120 V

substituting values, we have

120I_{p} = 3.2 x 0.72

120I_{p} = 2.304

I_{p}  = 2.304/120 = 0.0192 A

= <em>19.2 mA</em>

<em></em>

c) power input = I_{p} V_{p}

==> 0.0192 x 120 = <em>2.304 Watts</em>

7 0
3 years ago
Diferencie energia cinética de energia potencial gravitacional.
Vikentia [17]

Answer:

Featured snippet from the web

The atoms and molecules in it are in constant motion. The kinetic energy of such a body is the measure of its temperature. Potential energy is classified depending on the applicable restoring force. Gravitational potential energy – potential energy of an object which is associated with gravitational force

4 0
3 years ago
A 4.00-g bullet, traveling horizontally with a velocity of magnitude 400 m/s, is fired into a wooden block with mass 0.650 kg ,
Maru [420]

Answer:

a) Coefficient of kinetic friction between block and surface = 0.12

b) Decrease in kinetic energy of the bullet = 247.8 J

c) Kinetic energy of the block at the instant after the bullet passes through it = 0.541 J

Explanation:

Given,

Mass of bullet = 4.00 g = 0.004 kg

Initial velocity of the bullet = 400 m/s

Mass of wooden block = 0.65 kg

Initial velocity of the wooden block = 0 m/s (since it was initially at rest)

Final velocity of the bullet = 190 m/s

Distance slid through by the block after the collision = d = 72.0 cm = 0.72 m

Let the velocity of the wooden block after collision be v

According to the law of conservation of momentum,

Momentum before collision = Momentum after collision

Momentum before collision = (Momentum of bullet before collision) + (Momentum of wooden block before collision)

Momentum of bullet before collision = (0.004×400) = 1.6 kgm/s

Momentum of wooden block before collision = (0.65)(0) = 0 kgm/s

Momentum after collision = (Momentum of bullet after collision) + (Momentum of wooden block after collision)

Momentum of bullet after collision = (0.004×190) = 0.76 kgm/s

Momentum of wooden block after collision = (0.65)(v) = (0.65v) kgm/s

Momentum balance gives

1.6 + 0 = 0.76 + 0.65v

0.65v = 1.6 - 0.76 = 0.84

v = (0.84/0.65)

v = 1.29 m/s

The velocity of the wooden block after collision = 1.29 m/s

To obtain the coefficient of kinetic friction between block and surface, we will apply the work-energy theorem.

The work-energy theorem states that the work done in moving the block from one point to another is equal to the change in kinetic energy of the block between these two points.

The points to consider are the point when the block starts moving (immediately after collision) and when it stops as a result of frictional force.

Mathematically,

W = ΔK.E

W = workdone by the frictional force in stopping the wooden block (since there is no other horizontal force acting on the block)

W = -F.d (minus sign because the frictional force opposes motion)

d = Distance slid through by the block after the collision = 0.72 m

F = Frictional force = μN

where N = normal reaction of the surface on the wooden block and it is equal to the weight of the block.

N = W = mg

F = μmg

W = - μmg × d = (-μ)(0.65)(9.8) × 0.72 = (-4.59μ) J

ΔK.E = (final kinetic energy of the block) - (initial kinetic energy of the block)

Final kinetic energy of the block = 0 J (since the block comes to a rest)

(Initial kinetic energy of the block) = (1/2)(0.65)(1.29²) = 0.541 J

ΔK.E = 0 - 0.541 = - 0.541 J

W = ΔK.E

-4.59μ = -0.541

μ = (0.541/4.59)

μ = 0.12

b) The decrease in kinetic energy of the bullet

(Decrease in kinetic energy of the bullet) = (Kinetic energy of the bullet before collision) - (Kinetic energy of the bullet after collision)

Kinetic energy of the bullet before collision = (1/2)(0.004)(400²) = 320 J

Kinetic energy of the bullet after collision = (1/2)(0.004)(190²) = 72.2 J

Decrease in kinetic energy of the bullet = 320 - 72.2 = 247.8 J

c) Kinetic energy of the block at the instant after the bullet passes through it = (1/2)(0.65)(1.29²) = 0.541 J

Hope this Helps!!!

4 0
3 years ago
Think of a way you could demonstrate elastic force to a younger student. Describe the procedure you would follow and the materia
Soloha48 [4]

Answer:

I feel like to demonstrate you would use an elastic band as the material. You obviously have to put force in order to see how far it stretches. From this you can also find about its resistance and durability

Also you have to make sure the distance between the two hands are equal as you want an accurate result.

7 0
3 years ago
Other questions:
  • An object of mass m moves in one dimension with velocity given by v a/x for a a constant. Find the force on the object as a func
    10·1 answer
  • Why do alpha particles and nuclei repel each other rather than attract eachother
    5·1 answer
  • A MEMS-based accelerometer has a mass of m = 2 grams, an equivalent spring constant of k = 5 N/m, and an equivalent damping coef
    12·1 answer
  • Which equations can be used to solve for acceleration? Check all that apply.<br><br>t = ​
    14·2 answers
  • Two infinite plane sheets with uniform surface charge densities are placed parallel to each other with separation d. in the regi
    5·1 answer
  • A large sheet of charge has a uniform charge density of 9  μCm2. What is the electric field due to this charge at a point just
    6·1 answer
  • Which list places the layers of the sun in the correct order from outermost to innermost?
    12·1 answer
  • How can i stop loveing you if yo keep saying the things i want to hear
    7·2 answers
  • What limitations exist when attempting to<br> categorize hair by race?
    13·1 answer
  • Converting 67 m•s¹ to km•h¹​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!