1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ELEN [110]
2 years ago
7

Consider your moment of inertia about a vertical axis through the center of your body, both when you are standing straight up wi

th your arms flat against your sides, and when you are standing straight up holding your arms straight out to your sides. Estimate the ratio of the moment of inertia with your arms straight out to the moment of inertia with your arms flat against your sides. (Assume that the mass of an average adult male is about 80 kg, and that we can model his body when he is standing straight up with his arms at his sides as a cylinder. From experience in men's clothing stores, a man's average waist circumference seems to be about 34 inches, and the average chest circumference about 42 inches, from which an average circumference can be calculated. We'll also assume that about 20% of your body's mass is in your two arms, and that each has a length L = 1 m, so that each arm has a mass of about m = 8 kg.)
Physics
1 answer:
jeka942 years ago
3 0

Answer:

     I₁ / I₂ = 1.43

Explanation:

To find the relationship of the two inertial memits, let's calculate each one, let's start at the moment of inertia with the arms extended

Before starting let's reduce all units to the SI system

       d₁ = 42 in (2.54 10⁻² m / 1 in) = 106.68 10⁻² m

       d₂ = 38 in = 96.52 10⁻² m

The moment of inertia is a scalar quantity for which it can be added, the moment of total inertia would be the moment of inertia of the man (cylinder) plus the moment of inertia of each arm

        I₁ = I_man + 2 I_ arm

Man indicates that we can approximate them to a cylinder where the average diameter is

         d = (d₁ + d₂) / 2

         d = (106.68 + 96.52) 10-2 = 101.6 10⁻² m

The average radius is

         r = d / 2 = 50.8 10⁻² m = 0.508 m

The mass of the trunk is the mass of man minus the masses of each arm.

        M = M_man - 0.2 M_man = 80 (1-0.2)

        M = 64 kg

The moments of inertia are:

A cylinder with respect to a vertical axis:         Ic = ½ M r²

A rod that rotates at the end:                            I_arm = 1/3 m L²

Let us note that the arm rotates with respect to man, but this is at a distance from the axis of rotation of the body, so we must use the parallel axes theorem for the moment of inertia of the arm with respect to e = of the body axis.

           I1 = I_arm + m D²

Where D is the distance from the axis of rotation of the arm to the axis of the body

          D = d / 2 = 101.6 10⁻² /2 = 0.508 m

Let's replace

          I₁ = ½ M r² + 2 [(1/3 m L²) + m D²]

Let's calculate

         I₁ = ½ 64 (0.508)² + 2 [1/3 8 1² + 8 0.508²]

         I₁ = 8.258 + 5.33 + 4.129

         I₁ = 17,717 Kg m² / s²

Now let's calculate the moment of inertia with our arms at our sides, in this case the distance L = 0,

          I₂ = ½ M r² + 2 m D²

          I₂ = ½ 64 0.508² + 2 8 0.508²

          I₂ = 8,258 + 4,129

          I₂ = 12,387 kg m² / s²

The relationship between these two magnitudes is

          I₁ / I₂ = 17,717 /12,387

          I₁ / I₂ = 1.43

You might be interested in
a solid metal sphere of radius 3.00m carries a total charge of -5.50. what is the magnitude of the electric field at a distance
aivan3 [116]

Answer:

(a) Electric field at 0.250 m is zero.

(b)  Electric field at 2.90 m is zero.

(c) Electric field at 3.10 m is - 5.15 x 10³ V/m.

(d) Electric field at 8.00 m is - 0.77 x 10³ V/m.

Explanation:

Let Q and R are the charge and radius of the solid metal sphere. The solid metal sphere behave as conductor, so total charge Q is on the surface of the sphere.

Electric field inside and outside the metal sphere is :

E = 0 for r ≤ R ( inside )

  = \frac{KQ}{r^{2} } for r > R ( outside )

Here K is electric constant and r is the distance from the center of the metal sphere.

(a) Electric field at 0.250 m is zero as r < R i.e. 0.250 m < 3 m from the above equation.

(b)  Electric field at 2.90 m is zero as r < R i.e. 2.90 m < 3 m from the above equation.

(c) Electric field at 3.10 m is given by the relation as r > R :

E = \frac{KQ}{r^{2} }

Substitute 9 x 10⁹ N m²/C² for K, -5.50 μC for Q and 3.10 m for r in the above equation.

E = - \frac{9\times10^{9}\times5.50\times10^{-6}  }{3.10^{2} }

E = - 5.15 x 10³ V/m

(d) Electric field at 8.00 m is given by the relation as r > R :

E = \frac{KQ}{r^{2} }

Substitute 9 x 10⁹ N m²/C² for K, -5.50 μC for Q and 8.00 m for r in the above equation.

E = - \frac{9\times10^{9}\times5.50\times10^{-6}  }{8^{2} }

E = - 0.77 x 10³ V/m

8 0
2 years ago
If I keep F constant in F=ma, what is the relationship between m and a?
Jobisdone [24]

Answer:

If F is a constant, we can take f = 1

f = m×a

ma = 1

therefore we can say that force is hence proportinal to the product of mass and acceleration.

6 0
2 years ago
A ramp is 1.0 m high and 3.0 m long. What is the IMA of the ramp?
oksano4ka [1.4K]
To calculate the ideal mechanical advantage for an inclined plane, divide th length of the incline by the height of the incline. 
Therefore; IMA = L/h
L= 3.0 m, while h =1.0 m
 IMA = 3/1
         = 3
Therefore the IMA of the ramp is 3 
This means the ramp increases the force that is being exerted by 3 times.
4 0
3 years ago
Objects P and Q are placed in a bowl of water. P floats and Q sinks. Which one or more of the following can be deduced from this
Lady bird [3.3K]

The correct option that can be deduced for both Object P and Q is Option b) I and II only

To solve this question correctly, we need to understand the concept of density and it relation to mass and volume.

<h3>What is Density?</h3>

Density is a physical property of an object and can be expressed by using the relation:

\mathbf{Density = \dfrac{mass}{volume}}

From the given parameters, we are being told that:

  • P → floats
  • Q → sinks

This implies that Q has a greater density that P. Since Q has a greater density than P, Q will be heavier since it will have greater mass.

However, Q will not be denser than water because if that happens, P will be have a greater density which is untrue in this scenario.

Therefore, we can conclude that:

  • 1. Q is heavier than P
  • II. 1cm³ of Q has a greater mass than 1cm³ of P

Learn more about density here:

brainly.com/question/6838128

6 0
2 years ago
A battery has an electric potential of 1.5V and transfers 10.0 C between the two terminals. How much work was done?
bogdanovich [222]

Answer:

15 Joules

Explanation:

work = charge x potential difference

= 10 x 1.5

= 15

8 0
2 years ago
Other questions:
  • What type of motion is shown with this graph? (5 points)
    9·1 answer
  • What is the momentum of a bus that weighs 13,500,000 grams traveling at 65 mph?
    12·1 answer
  • Imagine we cook an egg by immersing it into water which is boiled by an electric heater. The heater utilizes a current I =10 A a
    10·1 answer
  • (1 point) A horizontal clothesline is tied between 2 poles, 20 meters apart. When a mass of 5 kilograms is tied to the middle of
    15·1 answer
  • I NEED HELP PLEASE THANKS :)
    12·1 answer
  • Which oftthe following is the least reliable source of background information for a scientific project? General internet site, g
    15·1 answer
  • What is one advantage the Hyperloop would have over other types of transportation?
    14·2 answers
  • An iron is made up of particles. What is true about the particles?
    14·1 answer
  • How old is a bone if it still has 50% of its carbon-14 content?
    9·1 answer
  • When a ball is pushed into water, it moves upward why
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!