1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ELEN [110]
3 years ago
7

Consider your moment of inertia about a vertical axis through the center of your body, both when you are standing straight up wi

th your arms flat against your sides, and when you are standing straight up holding your arms straight out to your sides. Estimate the ratio of the moment of inertia with your arms straight out to the moment of inertia with your arms flat against your sides. (Assume that the mass of an average adult male is about 80 kg, and that we can model his body when he is standing straight up with his arms at his sides as a cylinder. From experience in men's clothing stores, a man's average waist circumference seems to be about 34 inches, and the average chest circumference about 42 inches, from which an average circumference can be calculated. We'll also assume that about 20% of your body's mass is in your two arms, and that each has a length L = 1 m, so that each arm has a mass of about m = 8 kg.)
Physics
1 answer:
jeka943 years ago
3 0

Answer:

     I₁ / I₂ = 1.43

Explanation:

To find the relationship of the two inertial memits, let's calculate each one, let's start at the moment of inertia with the arms extended

Before starting let's reduce all units to the SI system

       d₁ = 42 in (2.54 10⁻² m / 1 in) = 106.68 10⁻² m

       d₂ = 38 in = 96.52 10⁻² m

The moment of inertia is a scalar quantity for which it can be added, the moment of total inertia would be the moment of inertia of the man (cylinder) plus the moment of inertia of each arm

        I₁ = I_man + 2 I_ arm

Man indicates that we can approximate them to a cylinder where the average diameter is

         d = (d₁ + d₂) / 2

         d = (106.68 + 96.52) 10-2 = 101.6 10⁻² m

The average radius is

         r = d / 2 = 50.8 10⁻² m = 0.508 m

The mass of the trunk is the mass of man minus the masses of each arm.

        M = M_man - 0.2 M_man = 80 (1-0.2)

        M = 64 kg

The moments of inertia are:

A cylinder with respect to a vertical axis:         Ic = ½ M r²

A rod that rotates at the end:                            I_arm = 1/3 m L²

Let us note that the arm rotates with respect to man, but this is at a distance from the axis of rotation of the body, so we must use the parallel axes theorem for the moment of inertia of the arm with respect to e = of the body axis.

           I1 = I_arm + m D²

Where D is the distance from the axis of rotation of the arm to the axis of the body

          D = d / 2 = 101.6 10⁻² /2 = 0.508 m

Let's replace

          I₁ = ½ M r² + 2 [(1/3 m L²) + m D²]

Let's calculate

         I₁ = ½ 64 (0.508)² + 2 [1/3 8 1² + 8 0.508²]

         I₁ = 8.258 + 5.33 + 4.129

         I₁ = 17,717 Kg m² / s²

Now let's calculate the moment of inertia with our arms at our sides, in this case the distance L = 0,

          I₂ = ½ M r² + 2 m D²

          I₂ = ½ 64 0.508² + 2 8 0.508²

          I₂ = 8,258 + 4,129

          I₂ = 12,387 kg m² / s²

The relationship between these two magnitudes is

          I₁ / I₂ = 17,717 /12,387

          I₁ / I₂ = 1.43

You might be interested in
Please help fast i need urgent
Sloan [31]
Is there more information ?
5 0
3 years ago
Real life examples of atomic physics
Flauer [41]

Answer:

magnets

static electricity

heat

7 0
3 years ago
Something that claims to be science but is not is called
icang [17]
That is called pseudoscience
5 0
3 years ago
A coin with a diameter 3.00 cm rolls up a 30.0 inclined plane. The coin starts out with an initial angular speed of 60.0 rad/s
sweet [91]

This question is in complete.The question is

A coin with a diameter 3.00 cm rolls up a 30.0° inclined plane. The coin starts out with an initial angular speed of 60.0 rad/s and rolls in a straight line without slipping. If the moment of inertia of the coin is(1/2) MR² , how far will the coin roll up the inclined plane (length along the ramp)? Hint: Conservation of mechanical energy.

Answer:

distance=0.124 m

Explanation:

mgh=mglSin\alpha =(1/2)Iw_{i}^{2}+(1/2)mv^{2}\\   v=wR\\Solve for L\\L=((1/2)(1/2)0.015^{2}*60^{2}+(1/2)(60*0.015^{2} ))/9.8Sin30\\   L=0.124m

6 0
4 years ago
What are the wavelengths of electromagnetic wave in free space that have the following frequencies?.
irina [24]

The wavelengths of the light are 4.3 * 10^-12 m and 0.2 m respectively.

<h3>What is wavelength?</h3>

The term wavelength has to do with the horizontal distance that is covered by a wave. We know that a long wavelength implies that the wave is able to travel a long distance from one point to another.

Given that;

c = λf

c = speed of light

λ = wavelength of ight

f = frequency of light

Thus;

λ = 3 * 10^8/ 7.00 x 10^19

λ = 4.3 * 10^-12 m

λ = 3 * 10^8/1.50 x 10^9

λ = 2 * 10^-1 or 0.2 m

Learn more about wavelength:brainly.com/question/13533093

#SPJ1

Missing parts:

What are the wavelengths of electromagnetic wave in free space that have the following frequencies? (a) 7.00 x 10^19 Hz______ pm (b) 1.50 x 10^9 Hz__________ cm

7 0
2 years ago
Read 2 more answers
Other questions:
  • This is what occurs when matter transitions between solid, liquid and gas.
    9·2 answers
  • How is energy distributed in the ocean?
    9·1 answer
  • Sallys physical education teacher timed her run and recorded the time and distance in the table below. What is her average speed
    12·1 answer
  • The springs of a 1700-kg car compress 5.0 mm when its 66-kg driver gets into the driver seat. If the car goes over a bump, what
    6·1 answer
  • A student creates an electromagnetic wave and then reverses the direction of the current. Which of the following will happen to
    9·1 answer
  • Compare and contrast an earthquake and a tsunami.
    15·1 answer
  • Describe how a convection cell is created in the mantle of the Earth.
    15·2 answers
  • Explain why the total positive charge in every atom of an element is always the<br> same.
    9·2 answers
  • A 10,000 kg traveling 15m/s strikes a second car which is at rest (not moving). The two stick together and move off with speed o
    15·1 answer
  • Your are on a boat on a lake with no current. The lake is full of sharks that will eat you if you put your hands too close to th
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!