Answer:
D potential energy at the top of the stairs, kinetic energy as she walks down
Explanation:
The potential energy of a body is the energy due to the position of the body.
At the top of the stair case, the student is at a significant height.
Kinetic energy is the energy due to the motion of the body.
As the student descends, the potential energy is changed to kinetic energy.
To find the potential energy;
P.E = mgH
m is the mass
g is the acceleration due to gravity
H is the height of the body
To find the kinetic energy;
K.E =
m v²
m is the mass
v is the velocity
Answer:
Electric flux in a) , b) and c) is same which is 0.373 × 10 ⁶ N m²/C
Explanation:
given,
surface charge (q) = 3.3 × 10⁻⁶ C
to calculate electric flux = ?
a) radius = 0.76 m
area of sphere = 4 π r²
electric flux = 

electric flux = 
flux = 0.373 × 10 ⁶ N m²/C
electric flux in the other two cases will also be same as electric flux is independent of area
so, Electric flux in a) , b) and c) is same which is 0.373 × 10 ⁶ N m²/C
Answer:
a. 340.13 m/s b. 680.26 m/s c. our wavelength doubles
Explanation:
a. speed of wave, v = fλ were f = frequency = 301 Hz and λ = wavelength = 1.13 m.
v = fλ = 301 Hz × 1.13 m = 340.13 m/s
b. If we double the frequency then f = 2 × 301 Hz = 602 Hz
v = fλ = 602 Hz × 1.13 m = 680.26 m/s
c. If the speed of the wave is still 340.13 m/s, if we cut the frequency in half, then frequency now equals f = 301 Hz/2 = 150.5 Hz.
Since v = fλ,
λ = v/f = 340.13 m/s ÷ 150.5 Hz = 2.26 m.
Since our initial wavelength λ₀ = 1.13 m,
λ/λ₀ = 2.26 m/1.13 m = 2.
So, λ = 2λ₀ our wavelength doubles