Answer:
Impulse = 80Ns
Explanation:
Given the following data;
Mass = 3kg
Force = 20N
Time = 4 seconds
To find the impulse experienced by the object;
Impulse = force * time
Impulse = 20*4
Impulse = 80Ns
Therefore, the impulse experienced by the object is 80 Newton-seconds.
The displacement vector (SI units) is
![\vec{r} =At\hat{i}+A[t^{3}-6t^{2}]\hat{j}](https://tex.z-dn.net/?f=%5Cvec%7Br%7D%20%3DAt%5Chat%7Bi%7D%2BA%5Bt%5E%7B3%7D-6t%5E%7B2%7D%5D%5Chat%7Bj%7D)
The speed is a scalar quantity. Its magnitude is

Answer: At√(t⁴ - 12t³ + 36t² + 1)
It is called surface tension it is the elastic personality of some liquids as they pull together to take up as little surface area as possible. the water molecules would rather stay together than be pulled apart<span />
Answer:
-2.3 × 10^-9 Coulombs(C).
Explanation:
So, we are given the following data or information or parameters that is going to help us to solve the problem effectively and efficiently;
=> " the shuttle's potential is typically changed by -1.4 V during one revolution. "
=> " Assuming the shuttle is a conducting sphere of radius 15 m".
So, in order to estimate the value for the charge we will be making use of the equation below:
Charge, C =( radius × voltage or potential difference) ÷ Coulomb's law constant.
Note that the value of Coulomb's law constant = 9 x 10^9 Nm^2 / C^2.
So, charge = { 15 × (- 1.4)} / 9 x 10^9 Nm^2 / C^2.
= -2.3 × 10^-9 Coulombs(C).