<span>Here the force that is applied between the electron and proton is centripetal, so equate the two forces to determine the velocity.
We know charge of the electron which for both Q1 and Q2, e = 1.60 x 10^-19 C
The Coulombs Constant k = 9.0 x 10^9
Radius r = 0.053 x 10^-9m = 5.3 x 10^-11 m
Mass of the Electron = 9.11 x 10^-31
F = k x Q1 x Q2 / r^2 = m x v^2 / r(centripetal force)
ke^2 / r^2 = m x v^2 / r => v^2 = ke^2 / m x r
v^2 = ((1.60 x 10^-19)^2 x 9.0 x 10^9) / (9.11 x 10^-31 x 5.3 x 10^-11 )
v^2 = 4.77 x 10^12 = 2.18 x 10^6 m/s
Since one orbit is the distance,
one orbit = circumference = 2 x pi x r; distance s = v x t.
v x t = 2 x pi x r => t = (2 x 3.14 x 5.3 x 10^-11) / (2.18 x 10^6)
t = 33.3 x 10^-11 / 2.18 x 10^6 = 15.27 x 10^-17 s
Revolutions per sec = 1 / t = 1 / 15.27 x 10^-17 = 6.54 x 10^15 Hz</span>
KE= .5*M*V^2
.5*.06*50^2
=75 joules
The objects have different densities
They objects may possess the same volume; however, due to a difference in density, they do not possess the same mass within that volume. This means that they experience a different gravitational force, which causes one to sink and the other to float.