Magnetic domain structure is responsible for the magnetic behavior of ferromagnetic materials like iron, nickel, cobalt and their alloys, and ferrimagnetic materials like ferrite. ... Magnetic domains form in materials which have magnetic ordering; that is, their dipoles spontaneously align due to the exchange interaction.
Answer:
Mass of the cart = 146 kg
Explanation:
A cart is pulled by a force of 250 N at an angle of 35° above the horizontal.
The cart accelerates at 1.4 m/s² horizontally.
Horizontal force = Fcosθ = 250 cos35° = 204.79N
We have F = ma
Substituting
204.79 = m x 1.4
m = 146.28 kg = 146 kg
Mass of the cart = 146 kg
Answer:

Explanation:
As we know by the principle of uncertainty that the product of uncertainty in position and uncertainty in momentum is given as

so here we know that


so we have


The wavelengths of the constituent travelling waves CANNOT be 400 cm.
The given parameters:
- <em>Length of the string, L = 100 cm</em>
<em />
The wavelengths of the constituent travelling waves is calculated as follows;

for first mode: n = 1

for second mode: n = 2

For the third mode: n = 3

For fourth mode: n = 4

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.
The complete question is below:
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:
A. 400 cm
B. 200 cm
C. 100 cm
D. 67 cm
E. 50 cm
Learn more about wavelengths of travelling waves here: brainly.com/question/19249186
Since the angle is West of North, therefore to find for
the westward component (horizontal component) of the vector, we use the sin
function:
sin θ = opposite side / hypotenuse = westward component /
resultant vector
So the westward component (x) is:
x = 85.42 sin 23
<span>x = 33.38 unit</span>