Answer:
D. The electron-withdrawing fluorine atoms pull electron density from the oxygen in trifluoroacetate. The negative charge is more stabilized in trifluoroacetate by this effect.
Explanation:
The structures of trifluoroacetate and acetic acid are both shown in the image attached.
The trifluoroacetate anion (CF3CO2-), just like the acetate anion has in the middle, two oxygen atoms.
However, in the trifluoroacetate anion, there are also three electronegative fluorine atoms attached to the nearby carbon atom attached to the carbonyl, and these pull some electron density through the sigma bonding network away from the oxygen atoms, thereby spreading out the negative charge further. This effect, called the "inductive effect" stabilizes the anion formed,the trifouoroacetate anion is thus more stabilized than the acetate anion.
Hence, trifluoroacetic acid is a stronger acid than acetic acid, having a pKa of -0.18.
Think of it as a balloon when you pump air into it it grows bigger but, if you put too much air into it what happens it pops because the pressure was too much for the balloon to withhold. That's the same with a basketball when you pump air into it the pressure pushing on the material increases. <span />
Answer:
Your average speed was 3.77 Miles per hour
Explanation:
Answer:A, C, D, E, F
Explanation:
A. True: Oxidizing agents are electron acceptors. They accept electrons and the get reduced. This means their oxidation number reduces
B. False: Reducing agents do not accept H+ ions. Reducing agents remove oxygen from another substance or give hydrogen to it.
C. True: oxidizing agents oxidizes other molecules but they accept electrons and get reduced themselves. If a molecule accepts electrons it has been reduced.
D True: Redox reactions MAY and may not involve the transfer of hydrogen ions depending on the reactants (H+). But redox in terms of acid and base means the donating and receiving of protons(H+)
E. True: A molecule that has gained H atoms is said to be reduced. Oxidizing agents are always the proton acceptor.
F. True: Oxidizing agents May and may not accept H+. In terms of acid and base oxidizing agents accept protons(H+)
<span>1 gallon = 4. 5 litres
1 litre = 1/4.5 gallons = 2/9 gallons
1 km = 5/8 mile
9.8 km = 9.8 x 5/8 miles = 49/8 miles
49/8
-------- mpg
2/9
49 x 9
--------- mpg
16
27.6 mpg </span>